Mouse methylome studies SRP608394 Track Settings
 
mouse, monkey, human Raw sequence reads [Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (607)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       HMR       PMD       CpG methylation ▾      
Select subtracks by views and experiment:
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
experiment
SRX30078842 
SRX30078843 
SRX30078844 
SRX30078894 
SRX30078895 
SRX30078896 
SRX30078897 
SRX30078898 
SRX30078899 
SRX30078900 
SRX30078901 
SRX30078902 
SRX30078903 
SRX30078905 
SRX30078910 
SRX30078911 
SRX30078912 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX30078842  HMR  Liver / SRX30078842 (HMR)   Schema 
hide
 Configure
 SRX30078842  CpG methylation  Liver / SRX30078842 (CpG methylation)   Schema 
hide
 SRX30078843  HMR  Liver / SRX30078843 (HMR)   Schema 
hide
 Configure
 SRX30078843  CpG methylation  Liver / SRX30078843 (CpG methylation)   Schema 
hide
 SRX30078844  HMR  Liver / SRX30078844 (HMR)   Schema 
hide
 Configure
 SRX30078844  CpG methylation  Liver / SRX30078844 (CpG methylation)   Schema 
hide
 SRX30078894  HMR  Liver / SRX30078894 (HMR)   Schema 
hide
 Configure
 SRX30078894  CpG methylation  Liver / SRX30078894 (CpG methylation)   Schema 
hide
 SRX30078895  HMR  Liver / SRX30078895 (HMR)   Schema 
hide
 Configure
 SRX30078895  CpG methylation  Liver / SRX30078895 (CpG methylation)   Schema 
hide
 SRX30078896  HMR  Liver / SRX30078896 (HMR)   Schema 
hide
 Configure
 SRX30078896  CpG methylation  Liver / SRX30078896 (CpG methylation)   Schema 
hide
 SRX30078897  HMR  Liver / SRX30078897 (HMR)   Schema 
hide
 Configure
 SRX30078897  CpG methylation  Liver / SRX30078897 (CpG methylation)   Schema 
hide
 SRX30078898  HMR  Liver / SRX30078898 (HMR)   Schema 
hide
 Configure
 SRX30078898  CpG methylation  Liver / SRX30078898 (CpG methylation)   Schema 
hide
 SRX30078899  HMR  Liver / SRX30078899 (HMR)   Schema 
hide
 Configure
 SRX30078899  CpG methylation  Liver / SRX30078899 (CpG methylation)   Schema 
hide
 SRX30078900  HMR  Liver / SRX30078900 (HMR)   Schema 
hide
 Configure
 SRX30078900  CpG methylation  Liver / SRX30078900 (CpG methylation)   Schema 
hide
 SRX30078901  HMR  Liver / SRX30078901 (HMR)   Schema 
hide
 Configure
 SRX30078901  CpG methylation  Liver / SRX30078901 (CpG methylation)   Schema 
hide
 SRX30078902  HMR  Liver / SRX30078902 (HMR)   Schema 
hide
 Configure
 SRX30078902  CpG methylation  Liver / SRX30078902 (CpG methylation)   Schema 
hide
 SRX30078903  HMR  Liver / SRX30078903 (HMR)   Schema 
hide
 Configure
 SRX30078903  CpG methylation  Liver / SRX30078903 (CpG methylation)   Schema 
hide
 SRX30078905  HMR  Liver / SRX30078905 (HMR)   Schema 
hide
 Configure
 SRX30078905  CpG methylation  Liver / SRX30078905 (CpG methylation)   Schema 
hide
 SRX30078910  HMR  Liver / SRX30078910 (HMR)   Schema 
hide
 Configure
 SRX30078910  CpG methylation  Liver / SRX30078910 (CpG methylation)   Schema 
hide
 SRX30078911  HMR  Liver / SRX30078911 (HMR)   Schema 
hide
 Configure
 SRX30078911  CpG methylation  Liver / SRX30078911 (CpG methylation)   Schema 
hide
 SRX30078912  HMR  Liver / SRX30078912 (HMR)   Schema 
hide
 Configure
 SRX30078912  CpG methylation  Liver / SRX30078912 (CpG methylation)   Schema 
    

Study title: mouse, monkey, human Raw sequence reads
SRA: SRP608394
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX30078842 Liver 0.761 17.5 48649 1180.1 1056 883.2 3243 9404.0 0.994 title: fig3b PBS-3; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G1-3_1.fq.gz"}
SRX30078843 Liver 0.761 16.3 47477 1186.3 985 872.1 2994 9582.0 0.994 title: fig3b PBS-2; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G1-2_1.fq.gz"}
SRX30078844 Liver 0.765 18.5 49877 1168.7 1109 885.3 3294 9402.6 0.994 title: fig3b PBS-1; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G1-1_1.fq.gz"}
SRX30078894 Liver 0.718 16.4 52212 1154.8 653 887.3 2830 10537.6 0.993 title: fig3f PBS-1; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "21.clean_1.fq.gz"}
SRX30078895 Liver 0.726 15.9 50665 1171.5 562 890.6 2983 10219.3 0.993 title: fig3f PBS-2; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "22.clean_1.fq.gz"}
SRX30078896 Liver 0.721 18.8 49765 1209.8 569 909.1 2869 10653.6 0.993 title: fig3f resected-1; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "12.clean_1.fq.gz"}
SRX30078897 Liver 0.728 14.3 44718 1332.1 497 904.0 2869 10651.7 0.993 title: fig3f resected-2; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "17.clean_1.fq.gz"}
SRX30078898 Liver 0.728 19.2 51772 1181.2 458 934.4 3531 10044.4 0.993 title: fig3f resected-3; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "19.clean_1.fq.gz"}
SRX30078899 Liver 0.719 15.3 46659 1240.8 792 853.8 2900 10700.1 0.993 title: fig3f sham-1; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "37.clean_1.fq.gz"}
SRX30078900 Liver 0.720 14.8 46962 1236.7 602 1615.3 2838 9925.9 0.993 title: fig3f sham-2; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "39.clean_1.fq.gz"}
SRX30078901 Liver 0.722 15.8 48742 1229.7 694 885.4 3095 9870.4 0.993 title: fig3f sham-3; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "40.clean_1.fq.gz"}
SRX30078902 Liver 0.715 19.0 50358 1217.3 756 865.2 3046 10970.0 0.994 title: fig3f regenerated-1; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "45.clean_1.fq.gz"}
SRX30078903 Liver 0.701 17.8 50330 1186.9 846 870.8 3161 10167.8 0.994 title: fig3f regenerated-2; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "46.clean_1.fq.gz"}
SRX30078905 Liver 0.719 20.5 53649 1198.5 621 887.8 3406 10506.2 0.994 title: fig3f regenerated-3; {"strain": "C57BL/6J hPCSK9 Tg", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-04-18", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "48.clean_1.fq.gz"}
SRX30078910 Liver 0.757 18.2 48432 1179.8 1050 865.5 2921 9555.2 0.994 title: fig3b EpiregT-3; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G2-3_1.fq.gz"}
SRX30078911 Liver 0.756 18.2 46946 1216.2 1195 854.0 3059 9286.3 0.994 title: fig3b EpiregT-2; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G2-2_1.fq.gz"}
SRX30078912 Liver 0.758 18.2 45652 1224.3 1266 886.8 2769 9812.4 0.994 title: fig3b EpiregT-1; {"strain": "C57BL/6J", "age": "adult", "dev_stage": "not collected", "collection_date": "2025-06-06", "geo_loc_name": "China", "sex": "male", "tissue": "liver", "description": "D28-CMJ-G2-1_1.fq.gz"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.