Human methylome studies SRP596170 Track Settings
 
Chemical reprogramming of human blood cells into hCiPS cells [ADSC derived hCiPSC, EPC derived hCiPSC]

Track collection: Human methylome studies

+  All tracks in this collection (468)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       AMR       CpG reads ▾       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  AMR  CpG reads  HMR 
experiment
SRX29478220 
SRX29478221 
SRX29478222 
SRX29478223 
SRX29478224 
SRX29478225 
SRX29478226 
SRX29478227 
SRX29478228 
SRX29478229 
SRX29478230 
SRX29478231 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX29478220  CpG methylation  EPC derived hCiPSC / SRX29478220 (CpG methylation)   Schema 
hide
 SRX29478220  HMR  EPC derived hCiPSC / SRX29478220 (HMR)   Schema 
hide
 Configure
 SRX29478221  CpG methylation  EPC derived hCiPSC / SRX29478221 (CpG methylation)   Schema 
hide
 SRX29478221  HMR  EPC derived hCiPSC / SRX29478221 (HMR)   Schema 
hide
 Configure
 SRX29478222  CpG methylation  EPC derived hCiPSC / SRX29478222 (CpG methylation)   Schema 
hide
 SRX29478222  HMR  EPC derived hCiPSC / SRX29478222 (HMR)   Schema 
hide
 SRX29478223  HMR  EPC derived hCiPSC / SRX29478223 (HMR)   Schema 
hide
 Configure
 SRX29478223  CpG methylation  EPC derived hCiPSC / SRX29478223 (CpG methylation)   Schema 
hide
 Configure
 SRX29478224  CpG methylation  EPC derived hCiPSC / SRX29478224 (CpG methylation)   Schema 
hide
 SRX29478224  HMR  EPC derived hCiPSC / SRX29478224 (HMR)   Schema 
hide
 Configure
 SRX29478225  CpG methylation  EPC derived hCiPSC / SRX29478225 (CpG methylation)   Schema 
hide
 SRX29478225  HMR  EPC derived hCiPSC / SRX29478225 (HMR)   Schema 
hide
 Configure
 SRX29478226  CpG methylation  EPC derived hCiPSC / SRX29478226 (CpG methylation)   Schema 
hide
 SRX29478226  HMR  EPC derived hCiPSC / SRX29478226 (HMR)   Schema 
hide
 Configure
 SRX29478227  CpG methylation  EPC derived hCiPSC / SRX29478227 (CpG methylation)   Schema 
hide
 SRX29478227  HMR  EPC derived hCiPSC / SRX29478227 (HMR)   Schema 
hide
 Configure
 SRX29478228  CpG methylation  ADSC derived hCiPSC / SRX29478228 (CpG methylation)   Schema 
hide
 SRX29478228  HMR  ADSC derived hCiPSC / SRX29478228 (HMR)   Schema 
hide
 Configure
 SRX29478229  CpG methylation  ADSC derived hCiPSC / SRX29478229 (CpG methylation)   Schema 
hide
 SRX29478229  HMR  ADSC derived hCiPSC / SRX29478229 (HMR)   Schema 
hide
 Configure
 SRX29478230  CpG methylation  ADSC derived hCiPSC / SRX29478230 (CpG methylation)   Schema 
hide
 SRX29478230  HMR  ADSC derived hCiPSC / SRX29478230 (HMR)   Schema 
hide
 SRX29478231  HMR  ADSC derived hCiPSC / SRX29478231 (HMR)   Schema 
hide
 Configure
 SRX29478231  CpG methylation  ADSC derived hCiPSC / SRX29478231 (CpG methylation)   Schema 
    

Study title: Chemical reprogramming of human blood cells into hCiPS cells
SRA: SRP596170
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX29478220 EPC derived hCiPSC 0.835 18.5 40381 1159.0 462 1095.3 4268 10405.8 0.976 title: GSM9076346 5034CBMC-CiPS-1#, Homo sapiens, Bisulfite-Seq; {"source_name": "5034", "cell_line": "5034", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478221 EPC derived hCiPSC 0.829 15.8 39286 1172.6 301 1104.0 4277 8782.9 0.976 title: GSM9076347 5034CBMC-CiPS-14#, Homo sapiens, Bisulfite-Seq; {"source_name": "5034", "cell_line": "5034", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478222 EPC derived hCiPSC 0.807 18.8 40826 1120.7 478 1094.3 4548 10734.0 0.976 title: GSM9076348 YB3272-CiPS-3#, Homo sapiens, Bisulfite-Seq; {"source_name": "YB3272", "cell_line": "YB3272", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478223 EPC derived hCiPSC 0.792 20.3 39790 1135.6 534 1074.4 4351 9436.5 0.975 title: GSM9076349 YB3272-CiPS-4#, Homo sapiens, Bisulfite-Seq; {"source_name": "YB3272", "cell_line": "YB3272", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478224 EPC derived hCiPSC 0.802 20.6 40750 1152.4 480 1039.7 4524 9102.4 0.977 title: GSM9076350 YB3271-CiPS-6#, Homo sapiens, Bisulfite-Seq; {"source_name": "YB3271", "cell_line": "YB3271", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478225 EPC derived hCiPSC 0.809 17.1 39949 1171.9 379 1078.7 4251 8555.0 0.977 title: GSM9076351 YB3271-CiPS-7#, Homo sapiens, Bisulfite-Seq; {"source_name": "YB3271", "cell_line": "YB3271", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478226 EPC derived hCiPSC 0.821 16.6 38087 1211.4 357 1077.6 4373 10911.6 0.974 title: GSM9076352 Z0684-CiPS-1#, Homo sapiens, Bisulfite-Seq; {"source_name": "Z0684", "cell_line": "Z0684", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478227 EPC derived hCiPSC 0.821 16.7 39069 1187.3 346 1039.1 4342 9970.4 0.975 title: GSM9076353 Z0684-CiPS-4#, Homo sapiens, Bisulfite-Seq; {"source_name": "Z0684", "cell_line": "Z0684", "cell_type": "EPC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478228 ADSC derived hCiPSC 0.820 18.2 41473 1140.3 775 1337.6 4039 10847.7 0.977 title: GSM9076354 0618-CiPS-1#, Homo sapiens, Bisulfite-Seq; {"source_name": "0618", "cell_line": "0618", "cell_type": "ADSC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478229 ADSC derived hCiPSC 0.795 20.2 40793 1143.0 821 1194.0 4373 8805.6 0.974 title: GSM9076355 0618-CiPS-2#, Homo sapiens, Bisulfite-Seq; {"source_name": "0618", "cell_line": "0618", "cell_type": "ADSC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478230 ADSC derived hCiPSC 0.818 16.8 41149 1211.5 332 1087.7 4656 8085.2 0.975 title: GSM9076356 1217-CiPS-2#, Homo sapiens, Bisulfite-Seq; {"source_name": "1217", "cell_line": "1217", "cell_type": "ADSC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX29478231 ADSC derived hCiPSC 0.838 19.7 43195 1171.3 461 1037.3 4674 9762.8 0.975 title: GSM9076357 1217-CiPS-3#, Homo sapiens, Bisulfite-Seq; {"source_name": "1217", "cell_line": "1217", "cell_type": "ADSC derived hCiPSC", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.