Mouse methylome studies SRP540228 Track Settings
 
The spatial zonation of the placental vasculature is specified by epigenetic mechanisms [WGBS] [Placenta]

Track collection: Mouse methylome studies

+  All tracks in this collection (604)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD       HMR      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD  HMR 
experiment
SRX26458532 
SRX26458533 
SRX26458534 
SRX26458535 
SRX26458536 
SRX26458537 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX26458532  AMR  Placenta / SRX26458532 (AMR)   Schema 
hide
 Configure
 SRX26458532  CpG reads  Placenta / SRX26458532 (CpG reads)   Schema 
hide
 Configure
 SRX26458532  CpG methylation  Placenta / SRX26458532 (CpG methylation)   Schema 
hide
 SRX26458532  PMD  Placenta / SRX26458532 (PMD)   Schema 
hide
 SRX26458532  HMR  Placenta / SRX26458532 (HMR)   Schema 
hide
 SRX26458533  AMR  Placenta / SRX26458533 (AMR)   Schema 
hide
 Configure
 SRX26458533  CpG reads  Placenta / SRX26458533 (CpG reads)   Schema 
hide
 Configure
 SRX26458533  CpG methylation  Placenta / SRX26458533 (CpG methylation)   Schema 
hide
 SRX26458533  PMD  Placenta / SRX26458533 (PMD)   Schema 
hide
 SRX26458533  HMR  Placenta / SRX26458533 (HMR)   Schema 
hide
 SRX26458534  AMR  Placenta / SRX26458534 (AMR)   Schema 
hide
 Configure
 SRX26458534  CpG reads  Placenta / SRX26458534 (CpG reads)   Schema 
hide
 Configure
 SRX26458534  CpG methylation  Placenta / SRX26458534 (CpG methylation)   Schema 
hide
 SRX26458534  PMD  Placenta / SRX26458534 (PMD)   Schema 
hide
 SRX26458534  HMR  Placenta / SRX26458534 (HMR)   Schema 
hide
 SRX26458535  AMR  Placenta / SRX26458535 (AMR)   Schema 
hide
 Configure
 SRX26458535  CpG reads  Placenta / SRX26458535 (CpG reads)   Schema 
hide
 Configure
 SRX26458535  CpG methylation  Placenta / SRX26458535 (CpG methylation)   Schema 
hide
 SRX26458535  PMD  Placenta / SRX26458535 (PMD)   Schema 
hide
 SRX26458535  HMR  Placenta / SRX26458535 (HMR)   Schema 
hide
 SRX26458536  AMR  Placenta / SRX26458536 (AMR)   Schema 
hide
 Configure
 SRX26458536  CpG reads  Placenta / SRX26458536 (CpG reads)   Schema 
hide
 Configure
 SRX26458536  CpG methylation  Placenta / SRX26458536 (CpG methylation)   Schema 
hide
 SRX26458536  PMD  Placenta / SRX26458536 (PMD)   Schema 
hide
 SRX26458536  HMR  Placenta / SRX26458536 (HMR)   Schema 
hide
 SRX26458537  AMR  Placenta / SRX26458537 (AMR)   Schema 
hide
 Configure
 SRX26458537  CpG reads  Placenta / SRX26458537 (CpG reads)   Schema 
hide
 Configure
 SRX26458537  CpG methylation  Placenta / SRX26458537 (CpG methylation)   Schema 
hide
 SRX26458537  PMD  Placenta / SRX26458537 (PMD)   Schema 
hide
 SRX26458537  HMR  Placenta / SRX26458537 (HMR)   Schema 
    

Study title: The spatial zonation of the placental vasculature is specified by epigenetic mechanisms [WGBS]
SRA: SRP540228
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX26458532 Placenta 0.738 11.0 58831 1038.0 172 1132.5 1860 12802.7 0.995 title: GSM8587199 WGBS-KO-1, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "DNMT3A KO", "geo_loc_name": "missing", "collection_date": "missing"}
SRX26458533 Placenta 0.741 18.2 66427 921.9 238 1061.6 2830 8699.2 0.997 title: GSM8587200 WGBS-KO-2, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "DNMT3A KO", "geo_loc_name": "missing", "collection_date": "missing"}
SRX26458534 Placenta 0.738 13.5 60538 1023.4 174 1155.0 3437 8303.0 0.996 title: GSM8587201 WGBS-KO-3, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "DNMT3A KO", "geo_loc_name": "missing", "collection_date": "missing"}
SRX26458535 Placenta 0.753 17.2 58971 909.7 339 1077.9 2647 7487.9 0.993 title: GSM8587202 WGBS-WT-1, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX26458536 Placenta 0.752 12.9 54524 954.0 195 1069.3 2378 7623.4 0.995 title: GSM8587203 WGBS-WT-2, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}
SRX26458537 Placenta 0.753 17.0 59362 919.2 218 1075.7 2313 8184.1 0.996 title: GSM8587204 WGBS-WT-3, Mus musculus, Bisulfite-Seq; {"source_name": "placenta", "tissue": "placenta", "cell_type": "endothelial cell", "genotype": "WT", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.