Mouse methylome studies SRP512476 Track Settings
 
The role of the TET-dependent DNA demethylation pathway in photoreceptor development and pathology [Retina]

Track collection: Mouse methylome studies

+  All tracks in this collection (604)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD       HMR      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD  HMR 
experiment
SRX24843308 
SRX24843309 
SRX24843310 
SRX24843311 
SRX24843312 
SRX24843313 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX24843308  AMR  Retina / SRX24843308 (AMR)   Schema 
hide
 Configure
 SRX24843308  CpG reads  Retina / SRX24843308 (CpG reads)   Schema 
hide
 Configure
 SRX24843308  CpG methylation  Retina / SRX24843308 (CpG methylation)   Schema 
hide
 SRX24843308  PMD  Retina / SRX24843308 (PMD)   Schema 
hide
 SRX24843308  HMR  Retina / SRX24843308 (HMR)   Schema 
hide
 SRX24843309  AMR  Retina / SRX24843309 (AMR)   Schema 
hide
 Configure
 SRX24843309  CpG reads  Retina / SRX24843309 (CpG reads)   Schema 
hide
 Configure
 SRX24843309  CpG methylation  Retina / SRX24843309 (CpG methylation)   Schema 
hide
 SRX24843309  PMD  Retina / SRX24843309 (PMD)   Schema 
hide
 SRX24843309  HMR  Retina / SRX24843309 (HMR)   Schema 
hide
 SRX24843310  AMR  Retina / SRX24843310 (AMR)   Schema 
hide
 Configure
 SRX24843310  CpG reads  Retina / SRX24843310 (CpG reads)   Schema 
hide
 Configure
 SRX24843310  CpG methylation  Retina / SRX24843310 (CpG methylation)   Schema 
hide
 SRX24843310  PMD  Retina / SRX24843310 (PMD)   Schema 
hide
 SRX24843310  HMR  Retina / SRX24843310 (HMR)   Schema 
hide
 SRX24843311  AMR  Retina / SRX24843311 (AMR)   Schema 
hide
 Configure
 SRX24843311  CpG reads  Retina / SRX24843311 (CpG reads)   Schema 
hide
 Configure
 SRX24843311  CpG methylation  Retina / SRX24843311 (CpG methylation)   Schema 
hide
 SRX24843311  PMD  Retina / SRX24843311 (PMD)   Schema 
hide
 SRX24843311  HMR  Retina / SRX24843311 (HMR)   Schema 
hide
 SRX24843312  AMR  Retina / SRX24843312 (AMR)   Schema 
hide
 Configure
 SRX24843312  CpG reads  Retina / SRX24843312 (CpG reads)   Schema 
hide
 Configure
 SRX24843312  CpG methylation  Retina / SRX24843312 (CpG methylation)   Schema 
hide
 SRX24843312  PMD  Retina / SRX24843312 (PMD)   Schema 
hide
 SRX24843312  HMR  Retina / SRX24843312 (HMR)   Schema 
hide
 SRX24843313  AMR  Retina / SRX24843313 (AMR)   Schema 
hide
 Configure
 SRX24843313  CpG reads  Retina / SRX24843313 (CpG reads)   Schema 
hide
 Configure
 SRX24843313  CpG methylation  Retina / SRX24843313 (CpG methylation)   Schema 
hide
 SRX24843313  PMD  Retina / SRX24843313 (PMD)   Schema 
hide
 SRX24843313  HMR  Retina / SRX24843313 (HMR)   Schema 
    

Study title: The role of the TET-dependent DNA demethylation pathway in photoreceptor development and pathology
SRA: SRP512476
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX24843308 Retina 0.788 12.9 59208 1153.4 221 1305.4 3241 11386.2 0.982 title: WGBS of mus musculus TET (Tet1/Te2/Tet3-floxed) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "male", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed mice", "genotype": "TET (Tet1-floxed, Tet2-floxed, Tet3-floxed) mice", "sample_type": "wgbsTET_P14_1"}
SRX24843309 Retina 0.777 13.9 55292 1108.6 218 1262.5 705 34840.2 0.982 title: WGBS of mus musculus TET (Tet1/Te2/Tet3-floxed) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "male", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed mice", "genotype": "TET (Tet1-floxed, Tet2-floxed, Tet3-floxed) mice", "sample_type": "wgbsTET_P14_2"}
SRX24843310 Retina 0.767 14.3 57313 1113.3 420 2196.4 1072 26234.9 0.984 title: WGBS of mus musculus TET (Tet1/Te2/Tet3-floxed) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "female", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed mice", "genotype": "TET (Tet1-floxed, Tet2-floxed, Tet3-floxed) mice", "sample_type": "wgbsTET_P14_3"}
SRX24843311 Retina 0.815 12.8 41023 1135.5 207 1225.8 1243 33700.4 0.983 title: WGBS of mus musculus Chx10-TET (Tet1/Te2/Tet3-floxed and Chx10-cre) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "male", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre mice", "genotype": "Chx10-TET (Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre) mice", "sample_type": "wgbsChx10TET_P14_1"}
SRX24843312 Retina 0.799 15.6 46094 1066.6 738 1061.9 1455 16322.9 0.982 title: WGBS of mus musculus Chx10-TET (Tet1/Te2/Tet3-floxed and Chx10-cre) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "female", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre mice", "genotype": "Chx10-TET (Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre) mice", "sample_type": "wgbsChx10TET_P14_2"}
SRX24843313 Retina 0.809 20.8 48119 1052.1 302 1167.0 2469 22433.8 0.983 title: WGBS of mus musculus Chx10-TET (Tet1/Te2/Tet3-floxed and Chx10-cre) retina; {"strain": "C57BL/6", "age": "postnatal-day [P] 14", "collection_date": "2024-04", "geo_loc_name": "USA", "sex": "male", "tissue": "retina", "breeding_method": "crossing Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre mice", "genotype": "Chx10-TET (Tet1-floxed, Tet2-floxed, Tet3-floxed, Chx10-cre) mice", "sample_type": "wgbsChx10TET_P14_3"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.