Mouse methylome studies SRP506266 Track Settings
 
Novel enzyme-based reduced representation method for DNA methylation profiling with low inputs [Tconv cells (CD4+Foxp3YFP-), Tconvcells(CD4+Foxp3YFP-), Treg cells (CD4+CD25+Foxp3-YFP+), Tregcells(CD4+CD25+Foxp3-YFP+)]

Track collection: Mouse methylome studies

+  All tracks in this collection (604)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD       HMR      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD  HMR 
experiment
SRX24486876 
SRX24486877 
SRX24486886 
SRX24486887 
SRX27527915 
SRX27527916 
SRX27527917 
SRX27527918 
SRX27527919 
SRX27527949 
SRX27527950 
SRX27527951 
SRX27527952 
SRX27527953 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX24486876  CpG methylation  Tregcells(CD4+CD25+Foxp3-YFP+) / SRX24486876 (CpG methylation)   Schema 
hide
 SRX24486876  HMR  Tregcells(CD4+CD25+Foxp3-YFP+) / SRX24486876 (HMR)   Schema 
hide
 Configure
 SRX24486877  CpG methylation  Tregcells(CD4+CD25+Foxp3-YFP+) / SRX24486877 (CpG methylation)   Schema 
hide
 SRX24486877  HMR  Tregcells(CD4+CD25+Foxp3-YFP+) / SRX24486877 (HMR)   Schema 
hide
 Configure
 SRX24486886  CpG methylation  Tconvcells(CD4+Foxp3YFP-) / SRX24486886 (CpG methylation)   Schema 
hide
 SRX24486886  HMR  Tconvcells(CD4+Foxp3YFP-) / SRX24486886 (HMR)   Schema 
hide
 Configure
 SRX24486887  CpG methylation  Tconvcells(CD4+Foxp3YFP-) / SRX24486887 (CpG methylation)   Schema 
hide
 SRX24486887  HMR  Tconvcells(CD4+Foxp3YFP-) / SRX24486887 (HMR)   Schema 
hide
 Configure
 SRX27527915  CpG methylation  Tconv cells (CD4+Foxp3YFP-) / SRX27527915 (CpG methylation)   Schema 
hide
 SRX27527915  HMR  Tconv cells (CD4+Foxp3YFP-) / SRX27527915 (HMR)   Schema 
hide
 SRX27527916  HMR  Tconv cells (CD4+Foxp3YFP-) / SRX27527916 (HMR)   Schema 
hide
 Configure
 SRX27527916  CpG methylation  Tconv cells (CD4+Foxp3YFP-) / SRX27527916 (CpG methylation)   Schema 
hide
 Configure
 SRX27527917  CpG methylation  Tconv cells (CD4+Foxp3YFP-) / SRX27527917 (CpG methylation)   Schema 
hide
 SRX27527917  HMR  Tconv cells (CD4+Foxp3YFP-) / SRX27527917 (HMR)   Schema 
hide
 Configure
 SRX27527918  CpG methylation  Tconv cells (CD4+Foxp3YFP-) / SRX27527918 (CpG methylation)   Schema 
hide
 SRX27527918  HMR  Tconv cells (CD4+Foxp3YFP-) / SRX27527918 (HMR)   Schema 
hide
 Configure
 SRX27527919  CpG methylation  Tconv cells (CD4+Foxp3YFP-) / SRX27527919 (CpG methylation)   Schema 
hide
 SRX27527919  HMR  Tconv cells (CD4+Foxp3YFP-) / SRX27527919 (HMR)   Schema 
hide
 Configure
 SRX27527949  CpG methylation  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527949 (CpG methylation)   Schema 
hide
 SRX27527949  HMR  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527949 (HMR)   Schema 
hide
 Configure
 SRX27527950  CpG methylation  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527950 (CpG methylation)   Schema 
hide
 SRX27527950  HMR  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527950 (HMR)   Schema 
hide
 Configure
 SRX27527951  CpG methylation  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527951 (CpG methylation)   Schema 
hide
 SRX27527951  HMR  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527951 (HMR)   Schema 
hide
 Configure
 SRX27527952  CpG methylation  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527952 (CpG methylation)   Schema 
hide
 SRX27527952  HMR  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527952 (HMR)   Schema 
hide
 Configure
 SRX27527953  CpG methylation  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527953 (CpG methylation)   Schema 
hide
 SRX27527953  HMR  Treg cells (CD4+CD25+Foxp3-YFP+) / SRX27527953 (HMR)   Schema 
    

Study title: Novel enzyme-based reduced representation method for DNA methylation profiling with low inputs
SRA: SRP506266
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX24486876 Tregcells(CD4+CD25+Foxp3-YFP+) 0.735 2.2 28687 1492.8 9 1513.6 238 55085.2 0.978 title: GSM8257425 SplenocyteTreg_RRBS_25ng_01, Mus musculus, Bisulfite-Seq; {"source_name": "Tregcells(CD4+CD25+Foxp3-YFP+)", "cell_type": "Tregcells(CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24486877 Tregcells(CD4+CD25+Foxp3-YFP+) 0.728 2.0 27487 1551.5 8 1187.2 118 72710.1 0.977 title: GSM8257426 SplenocyteTreg_RRBS_25ng_02, Mus musculus, Bisulfite-Seq; {"source_name": "Tregcells(CD4+CD25+Foxp3-YFP+)", "cell_type": "Tregcells(CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24486886 Tconvcells(CD4+Foxp3YFP-) 0.733 2.3 30641 1443.2 10 1387.4 175 63395.9 0.978 title: GSM8257435 SplenocyteTconv_RRBS_25ng_01, Mus musculus, Bisulfite-Seq; {"source_name": "Tconvcells(CD4+Foxp3YFP-)", "cell_type": "Tconvcells(CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24486887 Tconvcells(CD4+Foxp3YFP-) 0.717 2.8 31006 1404.6 14 1133.6 167 51254.1 0.977 title: GSM8257436 SplenocyteTconv_RRBS_25ng_02, Mus musculus, Bisulfite-Seq; {"source_name": "Tconvcells(CD4+Foxp3YFP-)", "cell_type": "Tconvcells(CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527915 Tconv cells (CD4+Foxp3YFP-) 0.729 13.6 48003 1002.0 441 1055.2 1158 15104.3 0.984 title: GSM8767989 SplenocyteTconv_WGBS_25ng_01, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Treg cells from 18-20 week-old healthy mice", "cell_type": "Tconv cells (CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527916 Tconv cells (CD4+Foxp3YFP-) 0.710 9.1 44352 1066.8 542 1089.3 678 19550.5 0.981 title: GSM8767990 SplenocyteTconv_WGBS_25ng_02, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Treg cells from 18-20 week-old healthy mice", "cell_type": "Tconv cells (CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527917 Tconv cells (CD4+Foxp3YFP-) 0.738 7.9 44386 1080.4 212 998.0 827 18854.1 0.985 title: GSM8767991 SplenocyteTconv_WGBS_25ng_03, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Treg cells from 18-20 week-old healthy mice", "cell_type": "Tconv cells (CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527918 Tconv cells (CD4+Foxp3YFP-) 0.731 11.5 46424 1029.3 291 1032.6 1037 15743.5 0.984 title: GSM8767992 SplenocyteTconv_WGBS_25ng_04, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Treg cells from 18-20 week-old healthy mice", "cell_type": "Tconv cells (CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527919 Tconv cells (CD4+Foxp3YFP-) 0.722 9.7 44783 1052.0 334 1039.9 775 18973.6 0.983 title: GSM8767993 SplenocyteTconv_WGBS_25ng_05, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Treg cells from 18-20 week-old healthy mice", "cell_type": "Tconv cells (CD4+Foxp3YFP-)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527949 Treg cells (CD4+CD25+Foxp3-YFP+) 0.696 8.4 38484 1141.6 555 1077.4 685 17669.1 0.976 title: GSM8768011 SplenocyteTreg_WGBS_25ng_01, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Tconv cells from 18-20 week-old healthy mice", "cell_type": "Treg cells (CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527950 Treg cells (CD4+CD25+Foxp3-YFP+) 0.723 9.5 40639 1110.5 213 996.3 559 20103.8 0.979 title: GSM8768012 SplenocyteTreg_WGBS_25ng_02, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Tconv cells from 18-20 week-old healthy mice", "cell_type": "Treg cells (CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527951 Treg cells (CD4+CD25+Foxp3-YFP+) 0.723 9.2 41414 1096.3 292 1046.5 939 16585.2 0.982 title: GSM8768013 SplenocyteTreg_WGBS_25ng_03, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Tconv cells from 18-20 week-old healthy mice", "cell_type": "Treg cells (CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527952 Treg cells (CD4+CD25+Foxp3-YFP+) 0.711 9.8 40747 1096.1 351 1071.9 741 17943.2 0.982 title: GSM8768014 SplenocyteTreg_WGBS_25ng_04, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Tconv cells from 18-20 week-old healthy mice", "cell_type": "Treg cells (CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}
SRX27527953 Treg cells (CD4+CD25+Foxp3-YFP+) 0.723 16.4 46037 1006.6 379 1019.0 1323 12604.0 0.984 title: GSM8768015 SplenocyteTreg_WGBS_25ng_05, Mus musculus, Bisulfite-Seq; {"source_name": "Splenic Tconv cells from 18-20 week-old healthy mice", "cell_type": "Treg cells (CD4+CD25+Foxp3-YFP+)", "genotype": "Foxp3YFP-Cre", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.