Human methylome studies SRP504674 Track Settings
 
Generation of human spermatogonia from pluripotent stem cells [PGCLC, xrTestis]

Track collection: Human methylome studies

+  All tracks in this collection (463)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG methylation ▾       PMD       AMR       HMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views CpG methylation  PMD  AMR  HMR  CpG reads 
experiment
SRX24395668 
SRX24395669 
SRX24395670 
SRX24395684 
SRX24395685 
SRX24395687 
SRX24395688 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX24395669  HMR  PGCLC / SRX24395669 (HMR)   Schema 
hide
 Configure
 SRX24395668  CpG methylation  xrTestis / SRX24395668 (CpG methylation)   Schema 
hide
 SRX24395668  PMD  xrTestis / SRX24395668 (PMD)   Schema 
hide
 SRX24395668  AMR  xrTestis / SRX24395668 (AMR)   Schema 
hide
 Configure
 SRX24395668  CpG reads  xrTestis / SRX24395668 (CpG reads)   Schema 
hide
 Configure
 SRX24395669  CpG methylation  PGCLC / SRX24395669 (CpG methylation)   Schema 
hide
 SRX24395669  PMD  PGCLC / SRX24395669 (PMD)   Schema 
hide
 SRX24395669  AMR  PGCLC / SRX24395669 (AMR)   Schema 
hide
 SRX24395670  HMR  PGCLC / SRX24395670 (HMR)   Schema 
hide
 Configure
 SRX24395669  CpG reads  PGCLC / SRX24395669 (CpG reads)   Schema 
hide
 Configure
 SRX24395670  CpG methylation  PGCLC / SRX24395670 (CpG methylation)   Schema 
hide
 SRX24395670  PMD  PGCLC / SRX24395670 (PMD)   Schema 
hide
 SRX24395670  AMR  PGCLC / SRX24395670 (AMR)   Schema 
hide
 Configure
 SRX24395670  CpG reads  PGCLC / SRX24395670 (CpG reads)   Schema 
hide
 Configure
 SRX24395684  CpG methylation  xrTestis / SRX24395684 (CpG methylation)   Schema 
hide
 SRX24395684  PMD  xrTestis / SRX24395684 (PMD)   Schema 
hide
 SRX24395684  AMR  xrTestis / SRX24395684 (AMR)   Schema 
hide
 Configure
 SRX24395684  CpG reads  xrTestis / SRX24395684 (CpG reads)   Schema 
hide
 Configure
 SRX24395685  CpG methylation  xrTestis / SRX24395685 (CpG methylation)   Schema 
hide
 SRX24395685  PMD  xrTestis / SRX24395685 (PMD)   Schema 
hide
 SRX24395685  AMR  xrTestis / SRX24395685 (AMR)   Schema 
hide
 Configure
 SRX24395685  CpG reads  xrTestis / SRX24395685 (CpG reads)   Schema 
hide
 Configure
 SRX24395687  CpG methylation  xrTestis / SRX24395687 (CpG methylation)   Schema 
hide
 SRX24395687  PMD  xrTestis / SRX24395687 (PMD)   Schema 
hide
 SRX24395687  AMR  xrTestis / SRX24395687 (AMR)   Schema 
hide
 Configure
 SRX24395687  CpG reads  xrTestis / SRX24395687 (CpG reads)   Schema 
hide
 Configure
 SRX24395688  CpG methylation  xrTestis / SRX24395688 (CpG methylation)   Schema 
hide
 SRX24395688  PMD  xrTestis / SRX24395688 (PMD)   Schema 
hide
 SRX24395688  AMR  xrTestis / SRX24395688 (AMR)   Schema 
hide
 Configure
 SRX24395688  CpG reads  xrTestis / SRX24395688 (CpG reads)   Schema 
    

Study title: Generation of human spermatogonia from pluripotent stem cells
SRA: SRP504674
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX24395668 xrTestis 0.124 15.7 13478 35144.5 386 1129.0 2199 236967.9 0.987 title: GSM8241056 WGBS_NCG6_VT, Homo sapiens, Bisulfite-Seq; {"source_name": "xrTestis", "tissue": "xrTestis", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395669 PGCLC 0.685 7.1 34048 1263.3 253 1027.2 773 17805.0 0.988 title: GSM8241057 WGBS_PGCLCs_d5_rep1, Homo sapiens, Bisulfite-Seq; {"source_name": "PGCLCs", "cell_type": "PGCLCs", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395670 PGCLC 0.682 11.3 40742 1088.8 352 1021.0 1808 11282.9 0.985 title: GSM8241058 WGBS_PGCLCs_d5_rep2, Homo sapiens, Bisulfite-Seq; {"source_name": "PGCLCs", "cell_type": "PGCLCs", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395684 xrTestis 0.265 10.7 17144 12995.4 110 956.6 524 400647.3 0.988 title: GSM8241048 WGBS_NCG3_AG, Homo sapiens, Bisulfite-Seq; {"source_name": "xrTestis", "tissue": "xrTestis", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395685 xrTestis 0.159 14.5 8922 29895.9 277 947.5 719 372851.5 0.989 title: GSM8241049 WGBS_NCG3_AGVT, Homo sapiens, Bisulfite-Seq; {"source_name": "xrTestis", "tissue": "xrTestis", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395687 xrTestis 0.276 12.3 25535 10247.3 313 1014.2 537 351465.3 0.988 title: GSM8241051 WGBS_NCG11_AG, Homo sapiens, Bisulfite-Seq; {"source_name": "xrTestis", "tissue": "xrTestis", "geo_loc_name": "missing", "collection_date": "missing"}
SRX24395688 xrTestis 0.178 15.9 11584 23868.2 583 976.4 455 443814.9 0.987 title: GSM8241052 WGBS_NCG11_AGVT, Homo sapiens, Bisulfite-Seq; {"source_name": "xrTestis", "tissue": "xrTestis", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.