Mouse methylome studies SRP397149 Track Settings
 
Basal cell extrusion primes pluripotent cells for differentiation [Embryo]

Track collection: Mouse methylome studies

+  All tracks in this collection (602)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       AMR       CpG methylation ▾       HMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views PMD  AMR  CpG methylation  HMR  CpG reads 
experiment
SRX17578078 
SRX17578081 
SRX17578092 
SRX17578094 
SRX17578096 
SRX17578098 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX17578078  PMD  Embryo / SRX17578078 (PMD)   Schema 
hide
 SRX17578078  AMR  Embryo / SRX17578078 (AMR)   Schema 
hide
 Configure
 SRX17578078  CpG methylation  Embryo / SRX17578078 (CpG methylation)   Schema 
hide
 SRX17578078  HMR  Embryo / SRX17578078 (HMR)   Schema 
hide
 Configure
 SRX17578078  CpG reads  Embryo / SRX17578078 (CpG reads)   Schema 
hide
 SRX17578081  PMD  Embryo / SRX17578081 (PMD)   Schema 
hide
 SRX17578081  AMR  Embryo / SRX17578081 (AMR)   Schema 
hide
 Configure
 SRX17578081  CpG methylation  Embryo / SRX17578081 (CpG methylation)   Schema 
hide
 SRX17578092  HMR  Embryo / SRX17578092 (HMR)   Schema 
hide
 Configure
 SRX17578081  CpG reads  Embryo / SRX17578081 (CpG reads)   Schema 
hide
 SRX17578092  PMD  Embryo / SRX17578092 (PMD)   Schema 
hide
 SRX17578092  AMR  Embryo / SRX17578092 (AMR)   Schema 
hide
 Configure
 SRX17578092  CpG methylation  Embryo / SRX17578092 (CpG methylation)   Schema 
hide
 SRX17578094  HMR  Embryo / SRX17578094 (HMR)   Schema 
hide
 Configure
 SRX17578092  CpG reads  Embryo / SRX17578092 (CpG reads)   Schema 
hide
 SRX17578094  PMD  Embryo / SRX17578094 (PMD)   Schema 
hide
 SRX17578094  AMR  Embryo / SRX17578094 (AMR)   Schema 
hide
 Configure
 SRX17578094  CpG methylation  Embryo / SRX17578094 (CpG methylation)   Schema 
hide
 SRX17578096  HMR  Embryo / SRX17578096 (HMR)   Schema 
hide
 Configure
 SRX17578094  CpG reads  Embryo / SRX17578094 (CpG reads)   Schema 
hide
 SRX17578096  PMD  Embryo / SRX17578096 (PMD)   Schema 
hide
 SRX17578096  AMR  Embryo / SRX17578096 (AMR)   Schema 
hide
 Configure
 SRX17578096  CpG methylation  Embryo / SRX17578096 (CpG methylation)   Schema 
hide
 SRX17578098  HMR  Embryo / SRX17578098 (HMR)   Schema 
hide
 Configure
 SRX17578096  CpG reads  Embryo / SRX17578096 (CpG reads)   Schema 
hide
 SRX17578098  PMD  Embryo / SRX17578098 (PMD)   Schema 
hide
 SRX17578098  AMR  Embryo / SRX17578098 (AMR)   Schema 
hide
 Configure
 SRX17578098  CpG methylation  Embryo / SRX17578098 (CpG methylation)   Schema 
hide
 Configure
 SRX17578098  CpG reads  Embryo / SRX17578098 (CpG reads)   Schema 
    

Study title: Basal cell extrusion primes pluripotent cells for differentiation
SRA: SRP397149
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX17578078 Embryo 0.679 9.1 31940 1437.8 110 1135.0 1497 17580.6 0.975 title: GSM6579147 WGBS_Epi_E5.5_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "Strain: CD-1; embryo sex: male/female", "genotype": "wild-type", "treatment": "no treatment", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17578081 Embryo 0.442 10.7 15219 21000.2 155 1069.8 968 876383.4 0.982 title: GSM6579148 WGBS_ExE_E5.5_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "Strain: CD-1; embryo sex: male/female", "genotype": "wild-type", "treatment": "no treatment", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17578092 Embryo 0.831 13.3 30057 1272.0 426 933.9 3675 34826.6 0.982 title: GSM6579144 WGBS_Embryo3D_rep2, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "3D epiblast stem cells", "cell_type": "Mouse pluripotent stem cells", "genotype": "wild-type", "treatment": "Cultured in 3D Matrigel with FGF2-ActivinA-XAV-Noggin", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17578094 Embryo 0.829 13.1 32918 1303.0 281 963.8 3707 40592.8 0.981 title: GSM6579145 WGBS_ESC3D_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "3D epiblast stem cells", "cell_type": "Mouse pluripotent stem cells", "genotype": "wild-type", "treatment": "Cultured in 3D Matrigel with FGF2-ActivinA-XAV-Noggin", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17578096 Embryo 0.834 14.0 33472 1251.9 215 990.7 5322 24280.1 0.981 title: GSM6579146 WGBS_ESC3D_rep2, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "3D epiblast stem cells", "cell_type": "Mouse pluripotent stem cells", "genotype": "wild-type", "treatment": "Cultured in 3D Matrigel with FGF2-ActivinA-XAV-Noggin", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17578098 Embryo 0.827 13.0 30006 1279.3 510 912.4 3424 34767.1 0.982 title: GSM6579143 WGBS_Embryo3D_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Embryo", "tissue": "Embryo", "cell_line": "3D epiblast stem cells", "cell_type": "Mouse pluripotent stem cells", "genotype": "wild-type", "treatment": "Cultured in 3D Matrigel with FGF2-ActivinA-XAV-Noggin", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.