Rat methylome studies SRP392105 Track Settings
 
Placental ischemia disrupts DNA methylation patterns of distal regulatory regions in rat [Placenta, Planceta]

Track collection: Rat methylome studies

+  All tracks in this collection (25)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD       HMR      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD  HMR 
experiment
SRX17062350 
SRX17062351 
SRX17062352 
SRX17062353 
SRX17062354 
SRX17062355 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX17062350  HMR  Placenta / SRX17062350 (HMR)   Schema 
hide
 SRX17062350  AMR  Placenta / SRX17062350 (AMR)   Schema 
hide
 SRX17062350  PMD  Placenta / SRX17062350 (PMD)   Schema 
hide
 Configure
 SRX17062350  CpG methylation  Placenta / SRX17062350 (CpG methylation)   Schema 
hide
 Configure
 SRX17062350  CpG reads  Placenta / SRX17062350 (CpG reads)   Schema 
hide
 SRX17062351  HMR  Placenta / SRX17062351 (HMR)   Schema 
hide
 SRX17062351  AMR  Placenta / SRX17062351 (AMR)   Schema 
hide
 SRX17062351  PMD  Placenta / SRX17062351 (PMD)   Schema 
hide
 Configure
 SRX17062351  CpG methylation  Placenta / SRX17062351 (CpG methylation)   Schema 
hide
 Configure
 SRX17062351  CpG reads  Placenta / SRX17062351 (CpG reads)   Schema 
hide
 SRX17062352  HMR  Placenta / SRX17062352 (HMR)   Schema 
hide
 SRX17062352  AMR  Placenta / SRX17062352 (AMR)   Schema 
hide
 SRX17062352  PMD  Placenta / SRX17062352 (PMD)   Schema 
hide
 Configure
 SRX17062352  CpG methylation  Placenta / SRX17062352 (CpG methylation)   Schema 
hide
 Configure
 SRX17062352  CpG reads  Placenta / SRX17062352 (CpG reads)   Schema 
hide
 SRX17062353  HMR  Placenta / SRX17062353 (HMR)   Schema 
hide
 SRX17062353  AMR  Placenta / SRX17062353 (AMR)   Schema 
hide
 SRX17062353  PMD  Placenta / SRX17062353 (PMD)   Schema 
hide
 Configure
 SRX17062353  CpG reads  Placenta / SRX17062353 (CpG reads)   Schema 
hide
 Configure
 SRX17062353  CpG methylation  Placenta / SRX17062353 (CpG methylation)   Schema 
hide
 SRX17062354  HMR  Placenta / SRX17062354 (HMR)   Schema 
hide
 SRX17062354  AMR  Placenta / SRX17062354 (AMR)   Schema 
hide
 Configure
 SRX17062354  CpG methylation  Placenta / SRX17062354 (CpG methylation)   Schema 
hide
 SRX17062354  PMD  Placenta / SRX17062354 (PMD)   Schema 
hide
 Configure
 SRX17062354  CpG reads  Placenta / SRX17062354 (CpG reads)   Schema 
hide
 SRX17062355  HMR  Placenta / SRX17062355 (HMR)   Schema 
hide
 SRX17062355  AMR  Placenta / SRX17062355 (AMR)   Schema 
hide
 SRX17062355  PMD  Placenta / SRX17062355 (PMD)   Schema 
hide
 Configure
 SRX17062355  CpG methylation  Placenta / SRX17062355 (CpG methylation)   Schema 
hide
 Configure
 SRX17062355  CpG reads  Placenta / SRX17062355 (CpG reads)   Schema 
    

Study title: Placental ischemia disrupts DNA methylation patterns of distal regulatory regions in rat
SRA: SRP392105
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX17062350 Placenta 0.512 21.1 31587 2010.2 2920 855.6 2366 326002.9 0.996 title: GSM6455946 RUPP_rep1, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "reduced uterine perfusion pressure", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17062351 Placenta 0.517 22.1 31804 1939.6 3051 847.3 2112 383115.7 0.995 title: GSM6455947 RUPP_rep2, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "reduced uterine perfusion pressure", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17062352 Placenta 0.534 20.6 33428 1981.5 2933 845.5 2392 335858.0 0.996 title: GSM6455948 RUPP_rep3, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "reduced uterine perfusion pressure", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17062353 Placenta 0.464 28.5 36853 3716.8 1728 855.7 2000 441790.7 0.989 title: GSM6455949 Control_rep1, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "control", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17062354 Placenta 0.536 35.3 35466 1487.6 2489 862.5 2586 268573.2 0.996 title: GSM6455950 Control_rep2, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "control", "geo_loc_name": "missing", "collection_date": "missing"}
SRX17062355 Placenta 0.532 20.4 31437 1850.1 2305 851.4 2345 317094.2 0.996 title: GSM6455951 Control_rep3, Rattus norvegicus, Bisulfite-Seq; {"source_name": "Placenta", "tissue": "Placenta", "treatment": "control", "geo_loc_name": "missing", "collection_date": "missing"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.