Human methylome studies SRP131112 Track Settings
 
Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots [RRBS] [Semen]

Track collection: Human methylome studies

+  All tracks in this collection (463)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD 
experiment
SRX3590972 
SRX3590973 
SRX3590974 
SRX3590975 
SRX3590976 
SRX3590977 
SRX3590978 
SRX3590979 
SRX3590981 
SRX3590985 
SRX3590986 
SRX3590987 
SRX3590988 
SRX3590989 
SRX3590990 
SRX3590991 
SRX3590992 
SRX3590993 
SRX3590995 
SRX3590996 
SRX3590997 
SRX3590998 
SRX3590999 
SRX3591000 
SRX3591001 
SRX3591002 
SRX3591003 
SRX3591004 
SRX3591005 
SRX3591006 
SRX3591007 
experiment
 All views AMR  CpG reads  CpG methylation  PMD 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX3590972  CpG methylation  Semen / SRX3590972 (CpG methylation)   Schema 
hide
 Configure
 SRX3590973  CpG methylation  Semen / SRX3590973 (CpG methylation)   Schema 
hide
 Configure
 SRX3590974  CpG methylation  Semen / SRX3590974 (CpG methylation)   Schema 
hide
 Configure
 SRX3590975  CpG methylation  Semen / SRX3590975 (CpG methylation)   Schema 
hide
 Configure
 SRX3590976  CpG methylation  Semen / SRX3590976 (CpG methylation)   Schema 
hide
 Configure
 SRX3590977  CpG methylation  Semen / SRX3590977 (CpG methylation)   Schema 
hide
 Configure
 SRX3590978  CpG methylation  Semen / SRX3590978 (CpG methylation)   Schema 
hide
 Configure
 SRX3590979  CpG methylation  Semen / SRX3590979 (CpG methylation)   Schema 
hide
 Configure
 SRX3590981  CpG methylation  Semen / SRX3590981 (CpG methylation)   Schema 
hide
 Configure
 SRX3590985  CpG methylation  Semen / SRX3590985 (CpG methylation)   Schema 
hide
 Configure
 SRX3590986  CpG methylation  Semen / SRX3590986 (CpG methylation)   Schema 
hide
 Configure
 SRX3590987  CpG methylation  Semen / SRX3590987 (CpG methylation)   Schema 
hide
 Configure
 SRX3590988  CpG methylation  Semen / SRX3590988 (CpG methylation)   Schema 
hide
 Configure
 SRX3590989  CpG methylation  Semen / SRX3590989 (CpG methylation)   Schema 
hide
 Configure
 SRX3590990  CpG methylation  Semen / SRX3590990 (CpG methylation)   Schema 
hide
 Configure
 SRX3590991  CpG methylation  Semen / SRX3590991 (CpG methylation)   Schema 
hide
 Configure
 SRX3590992  CpG methylation  Semen / SRX3590992 (CpG methylation)   Schema 
hide
 Configure
 SRX3590993  CpG methylation  Semen / SRX3590993 (CpG methylation)   Schema 
hide
 Configure
 SRX3590995  CpG methylation  Semen / SRX3590995 (CpG methylation)   Schema 
hide
 Configure
 SRX3590996  CpG methylation  Semen / SRX3590996 (CpG methylation)   Schema 
hide
 Configure
 SRX3590997  CpG methylation  Semen / SRX3590997 (CpG methylation)   Schema 
hide
 Configure
 SRX3590998  CpG methylation  Semen / SRX3590998 (CpG methylation)   Schema 
hide
 Configure
 SRX3590999  CpG methylation  Semen / SRX3590999 (CpG methylation)   Schema 
hide
 Configure
 SRX3591000  CpG methylation  Semen / SRX3591000 (CpG methylation)   Schema 
hide
 Configure
 SRX3591001  CpG methylation  Semen / SRX3591001 (CpG methylation)   Schema 
hide
 Configure
 SRX3591002  CpG methylation  Semen / SRX3591002 (CpG methylation)   Schema 
hide
 Configure
 SRX3591003  CpG methylation  Semen / SRX3591003 (CpG methylation)   Schema 
hide
 Configure
 SRX3591004  CpG methylation  Semen / SRX3591004 (CpG methylation)   Schema 
hide
 Configure
 SRX3591005  CpG methylation  Semen / SRX3591005 (CpG methylation)   Schema 
hide
 Configure
 SRX3591006  CpG methylation  Semen / SRX3591006 (CpG methylation)   Schema 
hide
 Configure
 SRX3591007  CpG methylation  Semen / SRX3591007 (CpG methylation)   Schema 
    

Study title: Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots [RRBS]
SRA: SRP131112
GEO: GSE109474
Pubmed: 29416570

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX3590972 Semen 0.432 2.1 3034 1681.9 0 0.0 10 21856663.7 0.958 title: GSM2944038 RRBS_11_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "11", "training_status": "Untrained", "body_type": "lean"}
SRX3590973 Semen 0.444 2.1 2562 1617.5 0 0.0 0 0.0 0.968 title: GSM2944039 RRBS_11_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "11", "training_status": "Trained", "body_type": "lean"}
SRX3590974 Semen 0.446 2.1 1959 1724.6 0 0.0 5 3664917.0 0.962 title: GSM2944040 RRBS_11_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "11", "training_status": "Detrained", "body_type": "lean"}
SRX3590975 Semen 0.449 2.1 1720 1773.8 0 0.0 7 20141089.4 0.974 title: GSM2944041 RRBS_14_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "14", "training_status": "Untrained", "body_type": "lean"}
SRX3590976 Semen 0.454 2.1 3462 1679.9 0 0.0 6 6950396.2 0.962 title: GSM2944042 RRBS_14_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "14", "training_status": "Trained", "body_type": "lean"}
SRX3590977 Semen 0.452 2.1 2267 1648.7 0 0.0 1 4329687.0 0.959 title: GSM2944043 RRBS_14_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "14", "training_status": "Detrained", "body_type": "lean"}
SRX3590978 Semen 0.444 2.1 1477 1590.8 0 0.0 6 10713104.7 0.962 title: GSM2944044 RRBS_15_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "15", "training_status": "Untrained", "body_type": "lean"}
SRX3590979 Semen 0.463 2.1 20 3244.0 0 0.0 4 568762.2 0.962 title: GSM2944045 RRBS_15_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "15", "training_status": "Trained", "body_type": "lean"}
SRX3590981 Semen 0.463 2.1 3393 1659.5 1 864.0 1 12322444.0 0.942 title: GSM2944047 RRBS_16_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "16", "training_status": "Untrained", "body_type": "lean"}
SRX3590985 Semen 0.391 2.3 9231 1381.3 13 1331.4 10 38884278.1 0.944 title: GSM2944051 RRBS_17_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "17", "training_status": "Trained", "body_type": "lean"}
SRX3590986 Semen 0.369 2.4 12711 1328.8 7 1650.4 3 113452085.7 0.969 title: GSM2944052 RRBS_17_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "17", "training_status": "Detrained", "body_type": "lean"}
SRX3590987 Semen 0.367 2.4 14014 1262.7 4 1728.2 5 99909864.6 0.966 title: GSM2944053 RRBS_18_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "18", "training_status": "Untrained", "body_type": "lean"}
SRX3590988 Semen 0.433 2.2 4722 1220.1 0 0.0 6 6841307.5 0.945 title: GSM2944054 RRBS_18_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "18", "training_status": "Trained", "body_type": "lean"}
SRX3590989 Semen 0.385 2.4 13073 1363.7 9 1141.6 9 67948917.7 0.955 title: GSM2944055 RRBS_18_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "18", "training_status": "Detrained", "body_type": "lean"}
SRX3590990 Semen 0.372 2.5 13046 1403.2 9 1324.0 3 108187048.3 0.965 title: GSM2944056 RRBS_24_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "24", "training_status": "Untrained", "body_type": "lean"}
SRX3590991 Semen 0.409 2.4 11730 1378.8 19 1402.3 7 90994952.4 0.950 title: GSM2944057 RRBS_24_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "24", "training_status": "Trained", "body_type": "lean"}
SRX3590992 Semen 0.372 2.7 14624 1405.2 24 1255.6 6 89713707.3 0.961 title: GSM2944058 RRBS_24_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "24", "training_status": "Detrained", "body_type": "lean"}
SRX3590993 Semen 0.421 2.3 10912 1363.9 9 1492.6 4 103476050.2 0.936 title: GSM2944059 RRBS_27_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "27", "training_status": "Untrained", "body_type": "lean"}
SRX3590995 Semen 0.412 2.3 6711 1146.1 4 1596.5 6 96437563.2 0.971 title: GSM2944061 RRBS_27_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "27", "training_status": "Detrained", "body_type": "lean"}
SRX3590996 Semen 0.390 2.1 2227 1835.1 0 0.0 2 13065642.5 0.954 title: GSM2944062 RRBS_5_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "5", "training_status": "Untrained", "body_type": "lean"}
SRX3590997 Semen 0.440 2.1 1223 1642.4 0 0.0 5 852863.6 0.966 title: GSM2944063 RRBS_5_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "5", "training_status": "Trained", "body_type": "lean"}
SRX3590998 Semen 0.469 2.1 2686 1663.1 0 0.0 7 10125717.3 0.963 title: GSM2944064 RRBS_5_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "5", "training_status": "Detrained", "body_type": "lean"}
SRX3590999 Semen 0.405 2.1 819 1694.7 0 0.0 5 2715376.4 0.973 title: GSM2944065 RRBS_7_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "7", "training_status": "Untrained", "body_type": "lean"}
SRX3591000 Semen 0.399 2.1 3218 1686.7 0 0.0 4 10336624.5 0.962 title: GSM2944066 RRBS_7_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "7", "training_status": "Trained", "body_type": "lean"}
SRX3591001 Semen 0.457 2.1 2089 1621.5 0 0.0 2 3301677.0 0.952 title: GSM2944067 RRBS_7_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "7", "training_status": "Detrained", "body_type": "lean"}
SRX3591002 Semen 0.443 2.1 951 1686.3 0 0.0 3 7737216.3 0.959 title: GSM2944068 RRBS_8_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "8", "training_status": "Untrained", "body_type": "lean"}
SRX3591003 Semen 0.441 2.1 1657 1713.9 0 0.0 3 13511490.0 0.962 title: GSM2944069 RRBS_8_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "8", "training_status": "Trained", "body_type": "lean"}
SRX3591004 Semen 0.461 2.2 4133 1695.0 0 0.0 6 89122187.0 0.952 title: GSM2944070 RRBS_8_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "8", "training_status": "Detrained", "body_type": "lean"}
SRX3591005 Semen 0.468 2.1 5796 1648.3 0 0.0 6 95610386.7 0.938 title: GSM2944071 RRBS_9_1, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "9", "training_status": "Untrained", "body_type": "lean"}
SRX3591006 Semen 0.463 2.1 1933 1608.7 0 0.0 3 3922342.7 0.934 title: GSM2944072 RRBS_9_2, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "9", "training_status": "Trained", "body_type": "lean"}
SRX3591007 Semen 0.462 2.1 1392 1517.0 0 0.0 1 3571520.0 0.909 title: GSM2944073 RRBS_9_3, Homo sapiens, Bisulfite-Seq; {"source_name": "motile semen", "participant": "9", "training_status": "Detrained", "body_type": "lean"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.