Human methylome studies SRP113417 Track Settings
 
Chromatin and Transcriptional Dynamics in Adult Germline Stem Cells and Mammalian Spermatogenesis [Spermatogonia (Thy1+), Testis]

Track collection: Human methylome studies

+  All tracks in this collection (463)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       HMR       CpG methylation ▾       PMD       CpG reads ▾      
Select subtracks by views and experiment:
 All views AMR  HMR  CpG methylation  PMD  CpG reads 
experiment
SRX528318 
SRX528319 
SRX528320 
SRX528321 
SRX528322 
SRX528323 
SRX528324 
SRX528325 
SRX528326 
SRX528327 
SRX528328 
SRX528331 
SRX528332 
SRX528333 
SRX528334 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX528318  HMR  Testis / SRX528318 (HMR)   Schema 
hide
 Configure
 SRX528318  CpG methylation  Testis / SRX528318 (CpG methylation)   Schema 
hide
 SRX528319  HMR  Testis / SRX528319 (HMR)   Schema 
hide
 Configure
 SRX528319  CpG methylation  Testis / SRX528319 (CpG methylation)   Schema 
hide
 SRX528320  HMR  Testis / SRX528320 (HMR)   Schema 
hide
 Configure
 SRX528320  CpG methylation  Testis / SRX528320 (CpG methylation)   Schema 
hide
 SRX528321  HMR  Testis / SRX528321 (HMR)   Schema 
hide
 Configure
 SRX528321  CpG methylation  Testis / SRX528321 (CpG methylation)   Schema 
hide
 SRX528322  HMR  Testis / SRX528322 (HMR)   Schema 
hide
 Configure
 SRX528322  CpG methylation  Testis / SRX528322 (CpG methylation)   Schema 
hide
 SRX528323  HMR  Testis / SRX528323 (HMR)   Schema 
hide
 Configure
 SRX528323  CpG methylation  Testis / SRX528323 (CpG methylation)   Schema 
hide
 SRX528324  HMR  Testis / SRX528324 (HMR)   Schema 
hide
 Configure
 SRX528324  CpG methylation  Testis / SRX528324 (CpG methylation)   Schema 
hide
 SRX528325  HMR  Testis / SRX528325 (HMR)   Schema 
hide
 Configure
 SRX528325  CpG methylation  Testis / SRX528325 (CpG methylation)   Schema 
hide
 SRX528326  HMR  Testis / SRX528326 (HMR)   Schema 
hide
 Configure
 SRX528326  CpG methylation  Testis / SRX528326 (CpG methylation)   Schema 
hide
 SRX528327  HMR  Testis / SRX528327 (HMR)   Schema 
hide
 Configure
 SRX528327  CpG methylation  Testis / SRX528327 (CpG methylation)   Schema 
hide
 SRX528328  HMR  Testis / SRX528328 (HMR)   Schema 
hide
 Configure
 SRX528328  CpG methylation  Testis / SRX528328 (CpG methylation)   Schema 
hide
 SRX528331  HMR  Testis / SRX528331 (HMR)   Schema 
hide
 Configure
 SRX528331  CpG methylation  Testis / SRX528331 (CpG methylation)   Schema 
hide
 SRX528332  HMR  Testis / SRX528332 (HMR)   Schema 
hide
 Configure
 SRX528332  CpG methylation  Testis / SRX528332 (CpG methylation)   Schema 
hide
 SRX528333  HMR  Testis / SRX528333 (HMR)   Schema 
hide
 Configure
 SRX528333  CpG methylation  Testis / SRX528333 (CpG methylation)   Schema 
hide
 SRX528334  HMR  Testis / SRX528334 (HMR)   Schema 
hide
 Configure
 SRX528334  CpG methylation  Testis / SRX528334 (CpG methylation)   Schema 
    

Study title: Chromatin and Transcriptional Dynamics in Adult Germline Stem Cells and Mammalian Spermatogenesis
SRA: SRP113417
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX528318 Testis 0.755 4.1 64970 2194.0 225 878.1 956 133922.1 0.998 title: GSM1375216 Human_Biseq_Donor1_Rep1, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528319 Testis 0.755 4.1 64592 2198.1 220 845.2 873 143235.3 0.998 title: GSM1375217 Human_Biseq_Donor1_Rep2, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528320 Testis 0.751 4.6 65571 2246.7 215 850.5 953 138020.6 0.998 title: GSM1375218 Human_Biseq_Donor1_Rep3, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528321 Testis 0.755 3.7 63242 2199.8 178 853.8 812 155050.9 0.998 title: GSM1375219 Human_Biseq_Donor1_Rep4, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528322 Testis 0.754 3.7 63212 2206.0 169 888.3 795 158785.8 0.998 title: GSM1375220 Human_Biseq_Donor1_Rep5, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528323 Testis 0.754 3.6 62952 2196.8 185 866.2 785 160030.0 0.998 title: GSM1375221 Human_Biseq_Donor1_Rep6, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528324 Testis 0.754 3.5 62544 2197.0 143 922.4 779 160215.5 0.998 title: GSM1375222 Human_Biseq_Donor1_Rep7, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528325 Testis 0.754 3.6 62589 2205.2 164 893.2 812 157102.9 0.998 title: GSM1375223 Human_Biseq_Donor1_Rep8, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528326 Testis 0.725 3.8 65781 2070.1 183 877.8 932 143508.4 0.997 title: GSM1375224 Human_Biseq_Donor2_Rep1, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528327 Testis 0.725 4.1 65953 2080.2 278 897.6 876 153347.6 0.997 title: GSM1375225 Human_Biseq_Donor2_Rep2, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528328 Testis 0.725 4.1 65727 2076.4 211 929.1 851 154719.8 0.997 title: GSM1375226 Human_Biseq_Donor2_Rep3, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528331 Testis 0.725 4.2 66052 2107.4 170 838.3 902 150869.8 0.997 title: GSM1375229 Human_Biseq_Donor2_Rep6, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528332 Testis 0.725 4.2 66171 2110.8 151 925.1 905 150160.2 0.997 title: GSM1375230 Human_Biseq_Donor2_Rep7, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528333 Testis 0.724 4.0 65488 2084.2 241 923.5 780 165617.0 0.997 title: GSM1375231 Human_Biseq_Donor2_Rep8, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}
SRX528334 Testis 0.722 3.7 64939 2085.5 202 882.4 844 160224.9 0.997 title: GSM1375232 Human_Biseq_Donor2_Rep9, Homo sapiens, Bisulfite-Seq; {"source_name": "Human_sperm_Biseq", "donor_age": "adult", "tissue": "testis", "cell_type": "sperm"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.