Human methylome studies SRP074598 Track Settings
 
Single Cell DNA Methylome Sequencing of Human Preimplantation Embryos [Heart, ICM, Sperm, TE, Villus]

Track collection: Human methylome studies

+  All tracks in this collection (455)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       HMR       PMD       CpG methylation ▾       CpG reads ▾      
Select subtracks by views and experiment:
 All views AMR  HMR  PMD  CpG methylation  CpG reads 
experiment
SRX3164285 
SRX3164296 
SRX3164297 
SRX3164305 
SRX3164311 
SRX3164313 
SRX3164314 
SRX3164319 
SRX3164320 
SRX3164370 
SRX3164371 
SRX3164375 
SRX3164376 
SRX3164381 
SRX3164388 
SRX3164398 
SRX3164399 
SRX3164409 
SRX3164416 
SRX3164417 
SRX3164466 
SRX3164468 
SRX3664181 
SRX3664182 
SRX3664275 
SRX3664286 
SRX3664287 
SRX3664288 
SRX3664289 
SRX3664290 
SRX3664291 
experiment
 All views AMR  HMR  PMD  CpG methylation  CpG reads 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX3164311  HMR  ICM / SRX3164311 (HMR)   Schema 
hide
 Configure
 SRX3164285  CpG methylation  ICM / SRX3164285 (CpG methylation)   Schema 
hide
 Configure
 SRX3164296  CpG methylation  ICM / SRX3164296 (CpG methylation)   Schema 
hide
 SRX3664181  HMR  Sperm / SRX3664181 (HMR)   Schema 
hide
 SRX3664182  HMR  Sperm / SRX3664182 (HMR)   Schema 
hide
 Configure
 SRX3164297  CpG methylation  ICM / SRX3164297 (CpG methylation)   Schema 
hide
 SRX3664286  HMR  Heart / SRX3664286 (HMR)   Schema 
hide
 Configure
 SRX3164305  CpG methylation  ICM / SRX3164305 (CpG methylation)   Schema 
hide
 SRX3664287  HMR  Heart / SRX3664287 (HMR)   Schema 
hide
 Configure
 SRX3164311  CpG methylation  ICM / SRX3164311 (CpG methylation)   Schema 
hide
 SRX3664290  HMR  Heart / SRX3664290 (HMR)   Schema 
hide
 Configure
 SRX3164313  CpG methylation  ICM / SRX3164313 (CpG methylation)   Schema 
hide
 SRX3664291  HMR  Heart / SRX3664291 (HMR)   Schema 
hide
 Configure
 SRX3164314  CpG methylation  ICM / SRX3164314 (CpG methylation)   Schema 
hide
 Configure
 SRX3164319  CpG methylation  ICM / SRX3164319 (CpG methylation)   Schema 
hide
 Configure
 SRX3164320  CpG methylation  ICM / SRX3164320 (CpG methylation)   Schema 
hide
 Configure
 SRX3164370  CpG methylation  ICM / SRX3164370 (CpG methylation)   Schema 
hide
 Configure
 SRX3164371  CpG methylation  ICM / SRX3164371 (CpG methylation)   Schema 
hide
 Configure
 SRX3164375  CpG methylation  ICM / SRX3164375 (CpG methylation)   Schema 
hide
 Configure
 SRX3164376  CpG methylation  ICM / SRX3164376 (CpG methylation)   Schema 
hide
 Configure
 SRX3164381  CpG methylation  TE / SRX3164381 (CpG methylation)   Schema 
hide
 Configure
 SRX3164388  CpG methylation  TE / SRX3164388 (CpG methylation)   Schema 
hide
 Configure
 SRX3164398  CpG methylation  TE / SRX3164398 (CpG methylation)   Schema 
hide
 Configure
 SRX3164399  CpG methylation  TE / SRX3164399 (CpG methylation)   Schema 
hide
 Configure
 SRX3164409  CpG methylation  TE / SRX3164409 (CpG methylation)   Schema 
hide
 Configure
 SRX3164416  CpG methylation  TE / SRX3164416 (CpG methylation)   Schema 
hide
 Configure
 SRX3164417  CpG methylation  TE / SRX3164417 (CpG methylation)   Schema 
hide
 Configure
 SRX3164466  CpG methylation  TE / SRX3164466 (CpG methylation)   Schema 
hide
 Configure
 SRX3164468  CpG methylation  TE / SRX3164468 (CpG methylation)   Schema 
hide
 Configure
 SRX3664181  CpG methylation  Sperm / SRX3664181 (CpG methylation)   Schema 
hide
 Configure
 SRX3664182  CpG methylation  Sperm / SRX3664182 (CpG methylation)   Schema 
hide
 Configure
 SRX3664275  CpG methylation  ICM / SRX3664275 (CpG methylation)   Schema 
hide
 Configure
 SRX3664286  CpG methylation  Heart / SRX3664286 (CpG methylation)   Schema 
hide
 Configure
 SRX3664287  CpG methylation  Heart / SRX3664287 (CpG methylation)   Schema 
hide
 Configure
 SRX3664288  CpG methylation  Villus / SRX3664288 (CpG methylation)   Schema 
hide
 Configure
 SRX3664289  CpG methylation  Villus / SRX3664289 (CpG methylation)   Schema 
hide
 Configure
 SRX3664290  CpG methylation  Heart / SRX3664290 (CpG methylation)   Schema 
hide
 Configure
 SRX3664291  CpG methylation  Heart / SRX3664291 (CpG methylation)   Schema 
    

Study title: Single Cell DNA Methylome Sequencing of Human Preimplantation Embryos
SRA: SRP074598
GEO: GSE81233
Pubmed: 29255258

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX3164285 ICM 0.174 5.8 0 0.0 5322 1164.1 1213 424270.5 0.987 title: GSM2773566 Icm01-W-b22, Homo sapiens, Bisulfite-Seq; source_name: Icm01-W; cell_type: ICM; sex: male; bulk or single cell: bulk cells
SRX3164296 ICM 0.189 6.5 1 533274.0 9874 1215.0 682 657358.5 0.982 title: GSM2773577 Icm02-W-b44, Homo sapiens, Bisulfite-Seq; source_name: Icm02-W; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164297 ICM 0.214 4.2 1 272834.0 4708 1191.2 569 733464.9 0.986 title: GSM2773578 Icm02-W-b45, Homo sapiens, Bisulfite-Seq; source_name: Icm02-W; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164305 ICM 0.176 4.9 0 0.0 5351 1125.8 803 600119.3 0.986 title: GSM2773586 Icm03-W-b65, Homo sapiens, Bisulfite-Seq; source_name: Icm03-W; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164311 ICM 0.570 3.7 41359 1678.4 1110 1036.6 218 56563.3 0.975 title: GSM2773592 Icm03-W-s64, Homo sapiens, Bisulfite-Seq; source_name: Icm03-W; cell_type: ICM; sex: female; bulk or single cell: single cell
SRX3164313 ICM 0.195 5.8 18 246348.2 6786 1222.2 964 536223.2 0.985 title: GSM2773594 Icm04-W-b87, Homo sapiens, Bisulfite-Seq; source_name: Icm04-W; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164314 ICM 0.194 5.4 3 304889.3 6656 1208.3 862 590325.4 0.985 title: GSM2773595 Icm04-W-b88, Homo sapiens, Bisulfite-Seq; source_name: Icm04-W; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164319 ICM 0.170 4.1 0 0.0 3643 1092.3 401 913358.4 0.986 title: GSM2773600 Icm05-W-b111, Homo sapiens, Bisulfite-Seq; source_name: Icm05-W; cell_type: ICM; sex: male; bulk or single cell: bulk cells
SRX3164320 ICM 0.191 4.5 0 0.0 4083 1122.8 558 764749.4 0.985 title: GSM2773601 Icm05-W-b112, Homo sapiens, Bisulfite-Seq; source_name: Icm05-W; cell_type: ICM; sex: male; bulk or single cell: bulk cells
SRX3164370 ICM 0.155 6.6 0 0.0 5858 1127.0 701 706665.5 0.981 title: GSM2773651 Icm11-Q-b293, Homo sapiens, Bisulfite-Seq; source_name: Icm11-Q; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164371 ICM 0.158 5.8 0 0.0 5315 1104.2 727 703898.5 0.981 title: GSM2773652 Icm11-Q-b294, Homo sapiens, Bisulfite-Seq; source_name: Icm11-Q; cell_type: ICM; sex: female; bulk or single cell: bulk cells
SRX3164375 ICM 0.203 4.6 4 146549.8 6874 1175.8 671 765358.1 0.945 title: GSM2773656 Icm13-Q-b424, Homo sapiens, Bisulfite-Seq; source_name: Icm13-Q; cell_type: ICM; sex: male; bulk or single cell: bulk cells
SRX3164376 ICM 0.186 6.7 19 262793.1 9203 1239.0 1037 582516.0 0.982 title: GSM2773657 Icm13-Q-b425, Homo sapiens, Bisulfite-Seq; source_name: Icm13-Q; cell_type: ICM; sex: male; bulk or single cell: bulk cells
SRX3164381 TE 0.164 6.0 0 0.0 6491 1170.8 747 572296.9 0.986 title: GSM2773662 Te01-W-b11, Homo sapiens, Bisulfite-Seq; source_name: Te01-W; cell_type: TE; sex: male; bulk or single cell: bulk cells
SRX3164388 TE 0.214 5.7 30 195977.3 7957 1234.1 822 620878.3 0.979 title: GSM2773669 Te02-W-b33, Homo sapiens, Bisulfite-Seq; source_name: Te02-W; cell_type: TE; sex: female; bulk or single cell: bulk cells
SRX3164398 TE 0.163 3.9 0 0.0 2260 1047.4 578 773084.2 0.986 title: GSM2773679 Te03-W-b56, Homo sapiens, Bisulfite-Seq; source_name: Te03-W; cell_type: TE; sex: female; bulk or single cell: bulk cells
SRX3164399 TE 0.184 5.1 0 0.0 5353 1128.1 805 621604.5 0.985 title: GSM2773680 Te03-W-b57, Homo sapiens, Bisulfite-Seq; source_name: Te03-W; cell_type: TE; sex: female; bulk or single cell: bulk cells
SRX3164409 TE 0.195 4.6 13 273760.6 4999 1135.6 484 983214.4 0.985 title: GSM2773690 Te04-W-b76, Homo sapiens, Bisulfite-Seq; source_name: Te04-W; cell_type: TE; sex: female; bulk or single cell: bulk cells
SRX3164416 TE 0.177 5.4 0 0.0 3439 1134.6 731 632949.7 0.986 title: GSM2773697 Te05-W-b100, Homo sapiens, Bisulfite-Seq; source_name: Te05-W; cell_type: TE; sex: male; bulk or single cell: bulk cells
SRX3164417 TE 0.193 6.2 0 0.0 5152 1179.5 911 556135.2 0.986 title: GSM2773698 Te05-W-b99, Homo sapiens, Bisulfite-Seq; source_name: Te05-W; cell_type: TE; sex: male; bulk or single cell: bulk cells
SRX3164466 TE 0.185 4.3 155 116918.7 5506 1064.7 549 987447.3 0.975 title: GSM2773747 Te11-Q-b284, Homo sapiens, Bisulfite-Seq; source_name: Te11-Q; cell_type: TE; sex: female; bulk or single cell: bulk cells
SRX3164468 TE 0.177 5.1 9 192424.7 7709 1162.0 621 850860.2 0.979 title: GSM2773749 Te13-Q-b411, Homo sapiens, Bisulfite-Seq; source_name: Te13-Q; cell_type: TE; sex: male; bulk or single cell: bulk cells
SRX3664181 Sperm 0.546 10.0 66536 2252.4 4503 939.1 579 218658.5 0.975 title: GSM2986304 scBS-hSP-1ng, Homo sapiens, Bisulfite-Seq; source_name: Sperm; cell_type: Sperm; sex: NA; bulk or single cell: bulk cells
SRX3664182 Sperm 0.616 7.6 60704 2214.6 5589 968.6 629 205092.7 0.971 title: GSM2986305 scBS-hSP-10ng, Homo sapiens, Bisulfite-Seq; source_name: Sperm; cell_type: Sperm; sex: NA; bulk or single cell: bulk cells
SRX3664275 ICM 0.219 3.6 1 1354630.0 319 987.2 0 0.0 0.979 title: GSM2986407 scBS-N-ICM-2b, Homo sapiens, Bisulfite-Seq; source_name: TE; cell_type: ICM; sex: NA; bulk or single cell: bulk cells
SRX3664286 Heart 0.704 12.2 45280 1111.5 586 1072.0 1627 23712.1 0.977 title: GSM2986418 11W-PBAT-heart-1, Homo sapiens, Bisulfite-Seq; source_name: Heart; cell_type: Heart; sex: NA; bulk or single cell: bulk cells
SRX3664287 Heart 0.705 12.3 45384 1110.2 568 1069.8 1911 22832.9 0.978 title: GSM2986419 11W-PBAT-heart-2, Homo sapiens, Bisulfite-Seq; source_name: Heart; cell_type: Heart; sex: NA; bulk or single cell: bulk cells
SRX3664288 Villus 0.579 6.1 30966 13043.3 1826 1055.1 1281 977372.8 0.928 title: GSM2986420 11W-PBAT-villus-1, Homo sapiens, Bisulfite-Seq; source_name: Villus; cell_type: Villus; sex: NA; bulk or single cell: bulk cells
SRX3664289 Villus 0.579 4.9 31223 11557.2 1055 1059.8 1135 1081799.6 0.922 title: GSM2986421 11W-PBAT-villus-2, Homo sapiens, Bisulfite-Seq; source_name: Villus; cell_type: Villus; sex: NA; bulk or single cell: bulk cells
SRX3664290 Heart 0.713 13.6 48496 1055.1 348 1049.4 2035 19617.8 0.973 title: GSM2986422 7W-PBAT-heart-1, Homo sapiens, Bisulfite-Seq; source_name: Heart; cell_type: Heart; sex: NA; bulk or single cell: bulk cells
SRX3664291 Heart 0.708 12.6 47527 1071.5 345 1060.5 1430 28645.0 0.971 title: GSM2986423 7W-PBAT-heart-2, Homo sapiens, Bisulfite-Seq; source_name: Heart; cell_type: Heart; sex: NA; bulk or single cell: bulk cells

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.