Mouse methylome studies SRP063015 Track Settings
 
Epigenomic Landscapes of Retinal Rods and Cones [Retina]

Track collection: Mouse methylome studies

+  All tracks in this collection (604)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD       HMR      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD  HMR 
experiment
SRX1175767 
SRX1175768 
SRX1175769 
SRX1175770 
SRX1175771 
SRX1175772 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX1175767  AMR  Retina / SRX1175767 (AMR)   Schema 
hide
 Configure
 SRX1175767  CpG reads  Retina / SRX1175767 (CpG reads)   Schema 
hide
 Configure
 SRX1175767  CpG methylation  Retina / SRX1175767 (CpG methylation)   Schema 
hide
 SRX1175767  PMD  Retina / SRX1175767 (PMD)   Schema 
hide
 SRX1175767  HMR  Retina / SRX1175767 (HMR)   Schema 
hide
 SRX1175768  AMR  Retina / SRX1175768 (AMR)   Schema 
hide
 Configure
 SRX1175768  CpG reads  Retina / SRX1175768 (CpG reads)   Schema 
hide
 Configure
 SRX1175768  CpG methylation  Retina / SRX1175768 (CpG methylation)   Schema 
hide
 SRX1175768  PMD  Retina / SRX1175768 (PMD)   Schema 
hide
 SRX1175768  HMR  Retina / SRX1175768 (HMR)   Schema 
hide
 SRX1175769  AMR  Retina / SRX1175769 (AMR)   Schema 
hide
 SRX1175769  PMD  Retina / SRX1175769 (PMD)   Schema 
hide
 SRX1175769  HMR  Retina / SRX1175769 (HMR)   Schema 
hide
 Configure
 SRX1175769  CpG reads  Retina / SRX1175769 (CpG reads)   Schema 
hide
 Configure
 SRX1175769  CpG methylation  Retina / SRX1175769 (CpG methylation)   Schema 
hide
 SRX1175770  AMR  Retina / SRX1175770 (AMR)   Schema 
hide
 Configure
 SRX1175770  CpG reads  Retina / SRX1175770 (CpG reads)   Schema 
hide
 Configure
 SRX1175770  CpG methylation  Retina / SRX1175770 (CpG methylation)   Schema 
hide
 SRX1175770  PMD  Retina / SRX1175770 (PMD)   Schema 
hide
 SRX1175770  HMR  Retina / SRX1175770 (HMR)   Schema 
hide
 SRX1175771  AMR  Retina / SRX1175771 (AMR)   Schema 
hide
 Configure
 SRX1175771  CpG reads  Retina / SRX1175771 (CpG reads)   Schema 
hide
 Configure
 SRX1175771  CpG methylation  Retina / SRX1175771 (CpG methylation)   Schema 
hide
 SRX1175771  PMD  Retina / SRX1175771 (PMD)   Schema 
hide
 SRX1175771  HMR  Retina / SRX1175771 (HMR)   Schema 
hide
 SRX1175772  HMR  Retina / SRX1175772 (HMR)   Schema 
hide
 SRX1175772  AMR  Retina / SRX1175772 (AMR)   Schema 
hide
 Configure
 SRX1175772  CpG reads  Retina / SRX1175772 (CpG reads)   Schema 
hide
 Configure
 SRX1175772  CpG methylation  Retina / SRX1175772 (CpG methylation)   Schema 
hide
 SRX1175772  PMD  Retina / SRX1175772 (PMD)   Schema 
    

Study title: Epigenomic Landscapes of Retinal Rods and Cones
SRA: SRP063015
GEO: GSE72550
Pubmed: 26949250

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX1175767 Retina 0.797 20.0 65261 1059.5 613 994.0 3421 12742.1 0.996 title: GSM1865005 MethylC-seq_WT_rods_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Rods from WT mouse retina", "strain_background": "C57BL6J/129", "genotype": "LMOPC1-Cre; R26-LSL-CAG-Sun1-GFP-myc", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "WT rod photoreceptors"}
SRX1175768 Retina 0.803 12.5 56790 1063.8 332 1023.7 2721 11048.1 0.995 title: GSM1865006 MethylC-seq_WT_rods_rep2, Mus musculus, Bisulfite-Seq; {"source_name": "Rods from WT mouse retina", "strain_background": "C57BL6J/129", "genotype": "LMOPC1-Cre; R26-LSL-CAG-Sun1-GFP-myc", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "WT rod photoreceptors"}
SRX1175769 Retina 0.823 13.3 53554 1075.8 359 1029.6 2915 9999.6 0.994 title: GSM1865007 MethylC-seq_rd7_rods_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Rods from rd7 mouse retina", "strain_background": "C57BL6J/129", "genotype": "LMOPC1-Cre; R26-LSL-CAG-Sun1-GFP-myc; Nr2e3rd7/rd7", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "rd7 rod photoreceptors"}
SRX1175770 Retina 0.825 13.7 52881 1070.0 437 1008.5 2976 9801.8 0.993 title: GSM1865008 MethylC-seq_rd7_rods_rep2, Mus musculus, Bisulfite-Seq; {"source_name": "Rods from rd7 mouse retina", "strain_background": "C57BL6J/129", "genotype": "LMOPC1-Cre; R26-LSL-CAG-Sun1-GFP-myc; Nr2e3rd7/rd7", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "rd7 rod photoreceptors"}
SRX1175771 Retina 0.815 17.6 60789 989.8 639 1001.2 3680 11888.4 0.992 title: GSM1865009 MethylC-seq_WT_cones_rep1, Mus musculus, Bisulfite-Seq; {"source_name": "Cones from WT mouse retina", "strain_background": "C57BL6J/129/FVB", "genotype": "HRGP-Cre; R26-LSL-CAG-Sun1-GFP-myc", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "WT cone photoreceptors"}
SRX1175772 Retina 0.822 14.6 56939 1025.5 481 1020.6 3921 11575.6 0.992 title: GSM1865010 MethylC-seq_WT_cones_rep2, Mus musculus, Bisulfite-Seq; {"source_name": "Cones from WT mouse retina", "strain_background": "C57BL6J/129/FVB", "genotype": "HRGP-Cre; R26-LSL-CAG-Sun1-GFP-myc", "age": "8 to 11 weeks", "sex": "male", "tissue": "retina", "cell_type": "WT cone photoreceptors"}

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.