Human methylome studies SRP299802 Track Settings
 
Acute lymphoblastic leukemia displays a distinct highly methylated genome [Cell Line]

Track collection: Human methylome studies

+  All tracks in this collection (455)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       HMR       PMD       CpG methylation ▾       CpG reads ▾      
Select subtracks by views and experiment:
 All views AMR  HMR  PMD  CpG methylation  CpG reads 
experiment
SRX13811031 
SRX13811032 
SRX13811033 
SRX13811034 
SRX13811035 
SRX13811036 
SRX13811037 
SRX13811038 
SRX13811039 
SRX13811040 
SRX13811041 
SRX13811042 
SRX13811043 
SRX9756753 
SRX9756754 
SRX9756755 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX13811031  HMR  Cell Line / SRX13811031 (HMR)   Schema 
hide
 Configure
 SRX13811031  CpG methylation  Cell Line / SRX13811031 (CpG methylation)   Schema 
hide
 SRX13811032  HMR  Cell Line / SRX13811032 (HMR)   Schema 
hide
 Configure
 SRX13811032  CpG methylation  Cell Line / SRX13811032 (CpG methylation)   Schema 
hide
 SRX13811033  HMR  Cell Line / SRX13811033 (HMR)   Schema 
hide
 Configure
 SRX13811033  CpG methylation  Cell Line / SRX13811033 (CpG methylation)   Schema 
hide
 SRX13811034  HMR  Cell Line / SRX13811034 (HMR)   Schema 
hide
 Configure
 SRX13811034  CpG methylation  Cell Line / SRX13811034 (CpG methylation)   Schema 
hide
 SRX13811035  HMR  Cell Line / SRX13811035 (HMR)   Schema 
hide
 Configure
 SRX13811035  CpG methylation  Cell Line / SRX13811035 (CpG methylation)   Schema 
hide
 SRX13811036  HMR  Cell Line / SRX13811036 (HMR)   Schema 
hide
 Configure
 SRX13811036  CpG methylation  Cell Line / SRX13811036 (CpG methylation)   Schema 
hide
 SRX13811037  HMR  Cell Line / SRX13811037 (HMR)   Schema 
hide
 Configure
 SRX13811037  CpG methylation  Cell Line / SRX13811037 (CpG methylation)   Schema 
hide
 SRX13811038  HMR  Cell Line / SRX13811038 (HMR)   Schema 
hide
 Configure
 SRX13811038  CpG methylation  Cell Line / SRX13811038 (CpG methylation)   Schema 
hide
 SRX13811039  HMR  Cell Line / SRX13811039 (HMR)   Schema 
hide
 Configure
 SRX13811039  CpG methylation  Cell Line / SRX13811039 (CpG methylation)   Schema 
hide
 SRX13811040  HMR  Cell Line / SRX13811040 (HMR)   Schema 
hide
 Configure
 SRX13811040  CpG methylation  Cell Line / SRX13811040 (CpG methylation)   Schema 
hide
 SRX13811041  HMR  Cell Line / SRX13811041 (HMR)   Schema 
hide
 Configure
 SRX13811041  CpG methylation  Cell Line / SRX13811041 (CpG methylation)   Schema 
hide
 SRX13811042  HMR  Cell Line / SRX13811042 (HMR)   Schema 
hide
 Configure
 SRX13811042  CpG methylation  Cell Line / SRX13811042 (CpG methylation)   Schema 
hide
 SRX13811043  HMR  Cell Line / SRX13811043 (HMR)   Schema 
hide
 Configure
 SRX13811043  CpG methylation  Cell Line / SRX13811043 (CpG methylation)   Schema 
hide
 SRX9756753  HMR  Cell Line / SRX9756753 (HMR)   Schema 
hide
 Configure
 SRX9756753  CpG methylation  Cell Line / SRX9756753 (CpG methylation)   Schema 
hide
 Configure
 SRX9756754  CpG methylation  Cell Line / SRX9756754 (CpG methylation)   Schema 
hide
 Configure
 SRX9756755  CpG methylation  Cell Line / SRX9756755 (CpG methylation)   Schema 
    

Study title: Acute lymphoblastic leukemia displays a distinct highly methylated genome
SRA: SRP299802
GEO: GSE164040
Pubmed: 35590059

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX13811031 Cell Line 0.862 34.6 33721 937.2 1433 978.1 759 12175.2 0.979 title: GSM5821052 WGBS_ALL-SIL, Homo sapiens, Bisulfite-Seq; source_name: ALL-SIL T-ALL cell line; condition: WT; cell_line: ALL-SIL
SRX13811032 Cell Line 0.817 35.6 81235 3810.4 1491 1154.1 1688 575923.2 0.980 title: GSM5821053 WGBS_LOUCY, Homo sapiens, Bisulfite-Seq; source_name: LOUCY T-ALL cell line; condition: WT; cell_line: LOUCY
SRX13811033 Cell Line 0.766 37.1 80304 996.0 819 1313.0 4048 34701.6 0.980 title: GSM5821054 WGBS_MHH-CALL-2, Homo sapiens, Bisulfite-Seq; source_name: MHH-CALL-2 B-ALL cell line; condition: WT; cell_line: MHH-CALL-2
SRX13811034 Cell Line 0.801 32.6 52687 1435.0 1214 914.7 4706 27699.8 0.982 title: GSM5821055 WGBS_MHH-CALL-4, Homo sapiens, Bisulfite-Seq; source_name: MHH-CALL-4 B-ALL cell line; condition: WT; cell_line: MHH-CALL-4
SRX13811035 Cell Line 0.748 39.6 63556 3323.0 2458 1108.7 1165 1157544.2 0.980 title: GSM5821056 WGBS_MOLT-16, Homo sapiens, Bisulfite-Seq; source_name: MOLT-16 T-ALL cell line; condition: WT; cell_line: MOLT-16
SRX13811036 Cell Line 0.836 26.8 58848 1070.6 1372 960.0 1991 12100.3 0.977 title: GSM5821057 WGBS_MUTZ5, Homo sapiens, Bisulfite-Seq; source_name: MUTZ5 B-ALL cell line; condition: WT; cell_line: MUTZ5
SRX13811037 Cell Line 0.786 10.9 32958 1346.2 998 898.9 322 28548.6 0.980 title: GSM5821058 WGBS_NALM-6_Rep1, Homo sapiens, Bisulfite-Seq; source_name: NALM-6 B-ALL cell line; condition: WT; cell_line: NALM-6
SRX13811038 Cell Line 0.793 29.8 44259 1500.7 1781 943.2 2338 17535.5 0.984 title: GSM5821059 WGBS_NALM-6_Rep2, Homo sapiens, Bisulfite-Seq; source_name: NALM-6 B-ALL cell line; condition: WT; cell_line: NALM-6
SRX13811039 Cell Line 0.801 35.9 76987 849.8 302 1007.1 3264 21498.2 0.982 title: GSM5821060 WGBS_NALM-16, Homo sapiens, Bisulfite-Seq; source_name: NALM-16 B-ALL cell line; condition: WT; cell_line: NALM-16
SRX13811040 Cell Line 0.781 18.1 54714 2545.9 1160 957.9 1393 833845.5 0.980 title: GSM5821061 WGBS_PEER, Homo sapiens, Bisulfite-Seq; source_name: PEER T-ALL cell line; condition: WT; cell_line: PEER
SRX13811041 Cell Line 0.778 39.8 57592 2374.3 1327 965.2 1108 1220101.2 0.980 title: GSM5821062 WGBS_PER-117, Homo sapiens, Bisulfite-Seq; source_name: PER-117 T-ALL cell line; condition: WT; cell_line: PER-117
SRX13811042 Cell Line 0.876 34.4 61061 1984.8 2019 1055.6 1920 126595.4 0.981 title: GSM5821063 WGBS_RPMI-8402, Homo sapiens, Bisulfite-Seq; source_name: RPMI-8402 T-ALL cell line; condition: WT; cell_line: RPMI-8402
SRX13811043 Cell Line 0.825 34.3 59585 3069.7 1454 1011.9 1318 902938.4 0.978 title: GSM5821064 WGBS_TALL-1, Homo sapiens, Bisulfite-Seq; source_name: TALL-1 T-ALL cell line; condition: WT; cell_line: TALL-1
SRX9756753 Cell Line 0.760 23.9 44483 2603.4 1028 979.8 1157 1124177.3 0.985 title: GSM4995532 WGBS_DND41_WT, Homo sapiens, Bisulfite-Seq; source_name: DND41 T-ALL cell line; cell_line: DND41; genotype: WT
SRX9756754 Cell Line 0.715 28.3 108552 4452.4 2971 1026.3 2016 487620.1 0.984 title: GSM4995533 WGBS_Jurkat_TET2KO, Homo sapiens, Bisulfite-Seq; source_name: Jurkat T-ALL cell line; cell_line: Jurkat; genotype: TET2 KO
SRX9756755 Cell Line 0.657 23.7 88036 6903.4 1555 971.6 2076 535086.9 0.986 title: GSM4995534 WGBS_Jurkat_WT, Homo sapiens, Bisulfite-Seq; source_name: Jurkat T-ALL cell line; cell_line: Jurkat; genotype: WT

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.