Mouse methylome studies SRP109867 Track Settings
 
Base-resolution analysis of DNA methylation patterns downstream of Dnmt3a in mouse naïve B cells [Spleen]

Track collection: Mouse methylome studies

+  All tracks in this collection (596)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG methylation ▾       HMR       CpG reads ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  CpG methylation  HMR  CpG reads  PMD 
experiment
SRX2938552 
SRX2938553 
SRX2938554 
SRX2938555 
SRX2938556 
SRX2938557 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX2938552  AMR  Spleen / SRX2938552 (AMR)   Schema 
hide
 Configure
 SRX2938552  CpG methylation  Spleen / SRX2938552 (CpG methylation)   Schema 
hide
 SRX2938552  HMR  Spleen / SRX2938552 (HMR)   Schema 
hide
 Configure
 SRX2938552  CpG reads  Spleen / SRX2938552 (CpG reads)   Schema 
hide
 SRX2938552  PMD  Spleen / SRX2938552 (PMD)   Schema 
hide
 SRX2938553  AMR  Spleen / SRX2938553 (AMR)   Schema 
hide
 SRX2938553  HMR  Spleen / SRX2938553 (HMR)   Schema 
hide
 Configure
 SRX2938553  CpG methylation  Spleen / SRX2938553 (CpG methylation)   Schema 
hide
 Configure
 SRX2938553  CpG reads  Spleen / SRX2938553 (CpG reads)   Schema 
hide
 SRX2938553  PMD  Spleen / SRX2938553 (PMD)   Schema 
hide
 SRX2938554  AMR  Spleen / SRX2938554 (AMR)   Schema 
hide
 Configure
 SRX2938554  CpG methylation  Spleen / SRX2938554 (CpG methylation)   Schema 
hide
 SRX2938554  HMR  Spleen / SRX2938554 (HMR)   Schema 
hide
 Configure
 SRX2938554  CpG reads  Spleen / SRX2938554 (CpG reads)   Schema 
hide
 SRX2938554  PMD  Spleen / SRX2938554 (PMD)   Schema 
hide
 SRX2938555  AMR  Spleen / SRX2938555 (AMR)   Schema 
hide
 Configure
 SRX2938555  CpG methylation  Spleen / SRX2938555 (CpG methylation)   Schema 
hide
 SRX2938555  HMR  Spleen / SRX2938555 (HMR)   Schema 
hide
 Configure
 SRX2938555  CpG reads  Spleen / SRX2938555 (CpG reads)   Schema 
hide
 SRX2938555  PMD  Spleen / SRX2938555 (PMD)   Schema 
hide
 SRX2938556  AMR  Spleen / SRX2938556 (AMR)   Schema 
hide
 Configure
 SRX2938556  CpG methylation  Spleen / SRX2938556 (CpG methylation)   Schema 
hide
 SRX2938556  HMR  Spleen / SRX2938556 (HMR)   Schema 
hide
 Configure
 SRX2938556  CpG reads  Spleen / SRX2938556 (CpG reads)   Schema 
hide
 SRX2938556  PMD  Spleen / SRX2938556 (PMD)   Schema 
hide
 SRX2938557  AMR  Spleen / SRX2938557 (AMR)   Schema 
hide
 Configure
 SRX2938557  CpG methylation  Spleen / SRX2938557 (CpG methylation)   Schema 
hide
 SRX2938557  HMR  Spleen / SRX2938557 (HMR)   Schema 
hide
 Configure
 SRX2938557  CpG reads  Spleen / SRX2938557 (CpG reads)   Schema 
hide
 SRX2938557  PMD  Spleen / SRX2938557 (PMD)   Schema 
    

Study title: Base-resolution analysis of DNA methylation patterns downstream of Dnmt3a in mouse naïve B cells
SRA: SRP109867
GEO: GSE100262
Pubmed: 29326230

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Details
SRX2938552 Spleen 0.808 8.6 49905 1070.4 71 1057.8 1793 15318.0 0.997 title: GSM2676371 Dnmt3a null rep1, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a-/-; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none
SRX2938553 Spleen 0.809 8.7 50006 1061.1 85 1072.3 1995 14381.9 0.997 title: GSM2676372 Dnmt3a null rep2, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a-/-; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none
SRX2938554 Spleen 0.800 10.8 51793 1024.1 99 1037.3 1840 14157.2 0.997 title: GSM2676373 Dnmt3a null rep3, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a-/-; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none
SRX2938555 Spleen 0.810 11.5 53108 1008.3 130 1050.4 3239 9356.1 0.997 title: GSM2676374 Dnmt3a WT rep1, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a+/+; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none
SRX2938556 Spleen 0.802 10.5 50431 1037.5 112 1052.3 1868 14764.8 0.997 title: GSM2676375 Dnmt3a WT rep2, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a+/+; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none
SRX2938557 Spleen 0.806 10.5 50366 1047.0 88 1116.2 1834 15377.7 0.997 title: GSM2676376 Dnmt3a WT rep3, Mus musculus, Bisulfite-Seq; source_name: nave splenic B cells; strain: B6, 129 (mixed background of C57BL/6 and 129); genotype: Dnmt3a+/+; sex: male; age: 2-4 months; tissue: spleen; cell_type: naive B cells; markers: B220+ IgD++ GL7-; stimulus: none

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.